

Copyright MBARI 2010

Environmental Sample Processor
Core Library:

Threads, Events, Logs,
Mutexes, Time and Date parsing

2/17/10 rev 2 Brent Roman brent@mbari.org

Copyright MBARI 2010

The ESP Log

• Log messages are generated whenever:
• Explicitly placed in a protocol

• Text is logged
• A low-level core command is executed that changes the ESP's state

• The command and parameters are logged as text
• E.g. SC.to 4 #move the carousel to tube 4

• A command is sent, or reply received on the Dwarf (I2C) bus
• The binary message is logged (not printable)

• An Unhandled Exception propagates all the way up a thread's call stack
• A data message for the GUI is stored (new)

• Some messages are also displayed on the users terminal
• Which are is determined by the ESP's operating mode

• ESPmode=debug displays all text messages
• ESPmode=quick displays very little

• Recall that the operating mode also determines the name of the log file
• Log files are binary data. Don't expect to be able to load them as text files.
• Use the dumplog command to view binary log files.

• The logging subsystem is started first
• Because all the other ESP software components use it.

Copyright MBARI 2010

Ruby Threads

• Lightweight parallelism within a single Ruby program
• Linux “processes” run as independent programs

• Each of which may be (separate) Ruby interpreters!
• Threads share memory, processes do not
• Threads are more efficient, but less safe

• Any thread may read or over write data owned by another
• A process may not access the memory of another

• Ruby's threads are similar to Java's early “green threads” implementations
• The Ruby interpreter manages them
• The Unix kernel does not even know Ruby threads exist

• Ruby 1.9 changes this (but we still use Ruby 1.6.8)

• Basic Ruby Threads are:
• Unnamed → There's no way to “look one up” if one doesn't have a reference

• Each is referred to only by its internal (non-printable) object identifier
• Independent → No parent/child relationships maintained between them

• Parent not notified when a child thread dies due to an error

Copyright MBARI 2010

ESP Threads

• ESP threads extend the Ruby Thread base class
• Not a superclass of Thread

• Each created with a name
• Typically a symbol, but may be a number or string

• :heating, 31, 3.14, “heating”
• Note that :heating != “heating”

• Each has a parent and child threads
• The first parent is, by definition, the one that spawned it

• In practice, there is always only one parent thread
• When spawned: children.last == parents.first

• Errors raise exceptions that propagate:
• Up the tree of threads via parents.first
• Down the tree via children
• To avoid having orphaned “zombie” threads

awaiting actions of other dead threads

• Each may be associated with multiple Checkpoints
• Checkpoints record the complete state of the thread
• So it may be resumed (or recovered) at a later time

Copyright MBARI 2010

ESP Thread Operations

• Thread[name] → look up thread by its given name
• MainThread → main ESP execution thread
• thread.name → the name of the thread

• Thread[aName].name == aName by definition
• thread.birthdate → real-time at which thread was spawned
• thread.parents → list of thread's parents

• childThread.parents.first == The thread that created childThread
• thread.children → list of thread's children
• thread.status → threads readiness to run

• “run”, “sleep”, false, or nil
• thread.finish → wait for thread to end, returning its result
• thread.exception → list of recent unhandled exceptions

• i.e. Why thread aborted due to an error
• Only the last few are such exceptions are remembered
• Output with puts, as in: puts MainThread.exception

• thread.lastErr == thread.exception.last
• thread.details → summary of thread state
• thread.progress → summary list of recent checkpoints

• Only the last few are retained.
• Output with puts, as in: puts MainThread.progress

• thread.checkpoint → list of recent checkpoints
• Each is very large, so only the most recent are retained.

• There are more, less often used, operations...

Copyright MBARI 2010

ESP Thread Resumption
from Checkpoints

• A checkpoint records the complete state of a thread
• Ruby and CompSci geeks call checkpoints “Continuations”
• Few mainstream programming languages support Continuations

• One can resume a thread from any previously stored checkpoint
• One cannot resurrect a dead thread!
• Thread having defined checkpoints that experience an error are made “moribund”

• Thread without checkpoints are allowed to die, as there's no way to resume them
• Checkpoints are stored as a side effect of writing (most) log messages

• The message text is the checkpoint's name
• thread.progress just outputs the name of each such stored checkpoint

• A special Checkpoint is stored when certain operations fail.
• E.g. Commands to Dwarves, PCR commands, etc.
• Such Checkpoints are called recovery points

• They are not included in the list returned by thread.checkpoint
• They are associated with the Exception the error caused

• thread.recover → retries operation that caused the most recent recoverable error
• thread.resume → resumes thread from the most recent checkpoint

• thread.resume(-n) → resumes thread after the nth most recent checkpoint
• Resume may require manually moving the ESP back to the appropriate state

• If the most recent checkpoint is at all old. That's why you should try recover first!
• Common values for thread are MainThread, Thread[:blocking], Thread[:sh2], etc.

Copyright MBARI 2010

ESP Event Scheduler

• Defers execution of a block of Ruby code to some exact, future time.
• This code executes in the scheduler thread, but often affects others.

• Time may be real or simulated
• ESP code never accesses Linux time directly for this reason

• Time may not advance until all ScheduleThreads are ready
• Each event is processed completely before time can advance
• A single thread that “hangs” will stop time from advancing

• Unless it “unsyncs” itself from the rest of the ScheduleThreads first
• This rule is necessary to ensure deterministic behavior
• A ScheduleThread is “ready” when it is waiting for input from an external device

• ScheduleThread is a superclass of Thread
• All child threads of ScheduleThreads are normally ScheduleThreads

• Outstanding events are maintained on a list sorted by the time at which they are to run
• It is common for events to be removed from this list

• Error “time-outs” are implemented by deferring the error processing event
• The error processing event is removed in the normal case

• delay 3 → defer code to wake up the current thread at Thread.time+3
• Same as delayUntil Thread.time+3
• Delay.sleep 3 → delay thread 3 seconds without outputting anything in the log

Copyright MBARI 2010

Recursive Mutexes

• Mutexes prevent interleaved access to an abstract or concrete resource
• That would otherwise lead to data corruption or inconsistent operation

• They ensure exclusive serial access by a single thread
• The thread, after having locked the resource, is said to own it.

• Mutexes are hard to manage and error prone
• The ESP Ruby code uses very few for this reason

• Arm, FlushPuck, the I2C bus, and two or three others.
• ESP Mutexes are “recursive”

• Recursive mutexes may be redundantly locked and unlocked
• They contain a count of how many times the owner has locked the resource
• 30.times{Arm.lock}; 29.times{Arm.unlock} → Arm.lock

• Resources must be released in exact reverse order in which they were allocated
• The Dining Philosophers have a Mexican Standoff and starve otherwise
• Threads blocked waiting for each other's resources are said to be “deadlocked”

• Resulting in starvation for the resource
• http://en.wikipedia.org/wiki/Dining_philosophers_problem

• This is why the FlushPuck is always claimed after the Arm
• And the FlushPuck is always released before releasing the Arm

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Copyright MBARI 2010

Date Parsing

• Unix time → dates must be >=1970 and <= 2038
• Dates and Times must be quoted in “strings”
• month / day / year or day – month – year or monthName day, year

• month may be numeric or an English month name or abbreviation
• year may be 4-digit or 2-digit (xx>=70 is assumed 19xx, else 20xx)

• year % dayOfYear → julian date
• Above may include dayOfWeek specification

• Days of the Week must be written as English names or abbreviations
• Beware of overspecified dates, ie. “Sat 2/15/09”

• ArgumentError ... -- 02/15/09 falls on a Sunday -- not Saturday
• Last date/time entered is remembered as a reference

• First date entered must specify a year
• When fields are omitted, next date meeting remaining criteria can be chosen

• Examples: Time ...
• “2/17/10” or '10-2-17' or '10%48' or 'February 17, 2010' → today
• 'Sat' → the next Saturday i.e. 2/20/10
• “4/5” → April 5th, 2010
• “%300” → October 27, 2010

Copyright MBARI 2010

Time Parsing

• hh:mm:ss.fraction
• All the above are optional
• May be followed by AM or PM

• If omitted, 24 hour format is assumed (military time)
• May be proceeded or followed by three letter time zone code

• UTC and GMT are equivalent
• The only other option is the local time zone

• You may not specify EST unless host's local time is Eastern Standard !!
• Last time entered is remembered as a reference

• When fields are omitted, next time meeting remaining criteria can be chosen
• This may be in the next day
• Time may be proceeded by a plus sign (+) to explicitly add to the last time entered

• Examples: Time ...
• “2/17/10 1PM” or '10-2-17 1PM' or '10%48 1PM' or '1PM February 17, 2010' →

Wed Feb 17 13:00:00 PST 2010
• “9AM” → 9AM Thursday
• “23:59:59.100” → nine tenths of a second before midnight Thursday
• “2::.” → nine tenths of a second before 2AM Friday
• “14:20” → exactly twenty minutes after 2PM Friday
• “12:10 Feb 17, 2010 → ten minutes after noon on February 17th, 2010
• “+:5” → five minutes later (fifteen after noon)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

