Environmental Sample Processor
Core Library:

Threads, Events, Logs,
Mutexes, Time and Date parsing

M B 0 R

h 2/17/10 rev 2 Brent Roman brent@mbari.org W
Copyright MBARI 2010

Log messages are generated whenever:
Explicitly placed in a protocol
- Text is logged
- Alow-level core command is executed that changes the ESP's state
The command and parameters are logged as text
E.g. SC.to 4 #move the carousel to tube 4
- A command is sent, or reply received on the Dwarf (I°C) bus
- The binary message is logged (not printable)
- An Unhandled Exception propagates all the way up a thread's call stack
- A data message for the GUI is stored (new)
- Some messages are also displayed on the users terminal
- Which are is determined by the ESP's operating mode
ESPmode=debug displays all text messages
ESPmode=quick displays very little
Recall that the operating mode also determines the name of the log file
Log files are binary data. Don't expect to be able to load them as text files.
Use the dumplog command to view binary log files.
- The logging subsystem is started first
Because all the other ESP software components use it.

M B 0 R

Copyright MBARI 2010 \V

Lightweight parallelism within a single Ruby program
Linux “processes” run as independent programs
Each of which may be (separate) Ruby interpreters!

-+ Threads share memory, processes do not

- Threads are more efficient, but less safe
- Any thread may read or over write data owned by another
- A process may not access the memory of another
Ruby's threads are similar to Java's early “green threads” implementations
- The Ruby interpreter manages them
- The Unix kernel does not even know Ruby threads exist

Ruby 1.9 changes this (but we still use Ruby 1.6.8)

Basic Ruby Threads are:
Unnamed - There's no way to “look one up” if one doesn't have a reference
Each is referred to only by its internal (non-printable) object identifier
Independent — No parent/child relationships maintained between them
Parent not notified when a child thread dies due to an error

M B 0 R

Copyright MBARI 2010 \V

ESP threads extend the Ruby Thread base class
Not a superclass of Thread

Each created with a name
- Typically a symbol, but may be a number or string
:heating, 31, 3.14, “heating”
Note that :heating != “heating”
Each has a parent and child threads
- The first parent is, by definition, the one that spawned it
In practice, there is always only one parent thread
- When spawned: children.last == parents.first
Errors raise exceptions that propagate:
- Up the tree of threads via parents.first
- Down the tree via children
- To avoid having orphaned “zombie” threads
awaiting actions of other dead threads

Each may be associated with multiple Checkpoints

- Checkpoints record the complete state of the thread
- S0 it may be resumed (or recovered) at a later time

Copyright MBARI 2010

M B 0 R

Copyright MBARI 2010

Thread[name] — look up thread by its given name
MainThread — main ESP execution thread
thread.name — the name of the thread
- Thread[aName].name == aName by definition
thread.birthdate - real-time at which thread was spawned
thread.parents - list of thread's parents
childThread.parents.first == The thread that created childThread
thread.children - list of thread's children
thread.status — threads readiness to run
“run”, “sleep”, false, or nil
thread.finish — wait for thread to end, returning its result
thread.exception - list of recent unhandled exceptions
l.e. Why thread aborted due to an error
Only the last few are such exceptions are remembered
Output with puts, as in: puts MainThread.exception
thread.lastErr == thread.exception.last
thread.details — summary of thread state
thread.progress — summary list of recent checkpoints
Only the last few are retained.
Output with puts, as in: puts MainThread.progress
thread.checkpoint - list of recent checkpoints
Each is very large, so only the most recent are retained.
There are more, less often used, operations...

- A checkpoint records the complete state of a thread
Ruby and CompSci geeks call checkpoints “Continuations”
Few mainstream programming languages support Continuations
One can resume a thread from any previously stored checkpoint
One cannot resurrect a dead thread!
- Thread having defined checkpoints that experience an error are made “moribund”
- Thread without checkpoints are allowed to die, as there's no way to resume them
Checkpoints are stored as a side effect of writing (most) log messages
- The message text is the checkpoint's name
thread.progress just outputs the name of each such stored checkpoint
- A special Checkpoint is stored when certain operations fail.
E.g. Commands to Dwarves, PCR commands, etc.
Such Checkpoints are called recovery points
- They are not included in the list returned by thread.checkpoint
- They are associated with the Exception the error caused
thread.recover — retries operation that caused the most recent recoverable error
- thread.resume - resumes thread from the most recent checkpoint
thread.resume(-n) — resumes thread after the nth most recent checkpoint
Resume may require manually moving the ESP back to the appropriate state
If the most recent checkpoint is at all old. That's why you should try recover first!
Common values for thread are MainThread, Thread[:blocking], Thread[:sh2], etc.
M B A R

Copyright MBARI 2010 \V

Defers execution of a block of Ruby code to some exact, future time.

This code executes in the scheduler thread, but often affects others.
Time may be real or simulated

ESP code never accesses Linux time directly for this reason
Time may not advance until all ScheduleThreads are ready

Each event is processed completely before time can advance
- A single thread that “hangs” will stop time from advancing

Unless it “unsyncs” itself from the rest of the ScheduleThreads first

- This rule is necessary to ensure deterministic behavior
- A ScheduleThread is “ready” when it is waiting for input from an external device
ScheduleThread is a superclass of Thread
- All child threads of ScheduleThreads are normally ScheduleThreads

Outstanding events are maintained on a list sorted by the time at which they are to run
It is common for events to be removed from this list

Error “time-outs” are implemented by deferring the error processing event

- The error processing event is removed in the normal case

delay 3 — defer code to wake up the current thread at Thread.time+3
Same as delayUntil Thread.time+3
Delay.sleep 3 — delay thread 3 seconds without outputting anything in the log

M B 0 R

Copyright MBARI 2010 \V

Mutexes prevent interleaved access to an abstract or concrete resource
- That would otherwise lead to data corruption or inconsistent operation
- They ensure exclusive serial access by a single thread
- The thread, after having locked the resource, is said to own it.
Mutexes are hard to manage and error prone
- The ESP Ruby code uses very few for this reason
- Arm, FlushPuck, the I°C bus, and two or three others.
ESP Mutexes are “recursive”
Recursive mutexes may be redundantly locked and unlocked
- They contain a count of how many times the owner has locked the resource
30.times{Arm.lock}; 29.times{Arm.unlock} — Arm.lock
Resources must be released in exact reverse order in which they were allocated
- The Dining Philosophers have a Mexican Standoff and starve otherwise
- Threads blocked waiting for each other's resources are said to be “deadlocked”
Resulting in starvation for the resource
http://en.wikipedia.org/wiki/Dining_philosophers_problem
- This is why the FlushPuck is always claimed after the Arm
- And the FlushPuck is always released before releasing the Arm

Copyright MBARI 2010 \V

http://en.wikipedia.org/wiki/Dining_philosophers_problem

Unix time — dates must be >=1970 and <= 2038
Dates and Times must be quoted in “strings”
- month | day | year or day — month — year or monthName day, year
- month may be numeric or an English month name or abbreviation
- year may be 4-digit or 2-digit (xx>=70 is assumed 19xx, else 20xx)
- year % dayOfYear — julian date
- Above may include dayOfWeek specification
Days of the Week must be written as English names or abbreviations
Beware of overspecified dates, ie. “Sat 2/15/09”
- ArgumentError ... -- 02/15/09 falls on a Sunday -- not Saturday
Last date/time entered is remembered as a reference
First date entered must specify a year
- When fields are omitted, next date meeting remaining criteria can be chosen
- Examples: Time ...
- “2/17/10" or '10-2-17' or '10%48' or 'February 17, 2010' - today
- 'Sat' — the next Saturday I.e. 2/20/10
- “4/5” — April 5th, 2010
- “0%300” — October 27, 2010

M B 0 R

Copyright MBARI 2010 \V

- hh:mm:ss.fraction
- All the above are optional
May be followed by AM or PM
If omitted, 24 hour format is assumed (military time)
May be proceeded or followed by three letter time zone code
- UTC and GMT are equivalent
- The only other option is the local time zone
You may not specify EST unless host's local time is Eastern Standard !!
Last time entered is remembered as a reference
- When fields are omitted, next time meeting remaining criteria can be chosen
- This may be in the next day
- Time may be proceeded by a plus sign (+) to explicitly add to the last time entered

Examples: Time ...

- *2/17/10 1PM” or '10-2-17 1PM' or '10%48 1PM' or '1PM February 17, 2010' -
Wed Feb 17 13:00:00 PST 2010

- “OAM” - 9AM Thursday

- “23:59:59.100” - nine tenths of a second before midnight Thursday

- “2:.." - nine tenths of a second before 2AM Friday

- “14:20” - exactly twenty minutes after 2PM Friday

- “12:10 Feb 17, 2010 - ten minutes after noon on February 17th, 2010

- “+:5" - five minutes later (fifteen after noon) L

Copyright MBARI 2010 \V

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

