Copyright MBARI 2010

Environmental Sample Processor
Software Environment Variables
and
File Directory Layout

1/4/10 Brent Roman brent@mbari.org

M B 0 R

- All are interpreted, dynamic scripting languages
- Optimized for starting and managing other processes
- Which may in turn be other command shells
Input may come from user at a terminal or canned script text files
From “ash” to “zsh” -- many, more or less compatible alternatives

- “sh” -- the original Bourne shell (by Steve Bourne while at Bell Labs)
- “csh” -- 'C'-like, improved on tcsh (by Bill Joy while at UC Berkeley)
- “ksh” -- Kron shell (by David Korn of Bell Labs)
- “bash” -- Bourne Again SHell: GNU's answer to “sh”
Big, Bloated and Slow with lots of cool, mind bending features
Default shell on most desktop Linux distros where RAM is plentiful
- And, you OS/X mac heads know it as the “terminal window”
- “rush” -- the RUby SHell: a command shell written in Ruby
- “zsh” -- the Z SHell
- Attempts a synthesis of those that came before
- “ash” -- the A SHell (by Kenneth Almquist)
- Small and very compatible with bash
Used in many memory constrained or embedded Linux products
- Wi-Fi routers
- Set up boxes
- And, our own ESP !l M B AR

Copyright MBARI 2010 \V

Each program (or process) runs in an “environment” consisting of:
Command Line arguments passed explicitly after the command name
: And environment “variables” or keys associated with text values
It's easy to create a new one or alter an existing one's value
FOO=BAR
Most shells use $ prefix to replace environment variable's name with its text value
echo $FOO ==> writes “BAR”
Environment variables marked for export are inherited from parent process
export FOO=bar; sh -¢ 'echo $FOQ' ==> writes “bar”
Or, they may be passed into a single process much like a command argument
FOO=bar sh -c 'echo $FOO' ==> also writes “bar”
echo $FOO ==> writes “BAR”
The env command lists all environment variables

Common environment variables
HOME=Current working directory
Changed with the cd shell built-in command
PATH=Colon separated list of directories to search for executable files with no leading /
USER=User's login name
DISPLAY=machine:screen# (where X-windows sends graphics)
typically localhost:0 # the first local screen

Copyright MBARI 2010 \V

Processes can change their own environments
But, they cannot change the environments of others
Shell scripts that change environment variables don't have any lasting effect
sh -¢c “FOO=notBAR”;, echo $FOO ==> writes “BAR”
sh -c “cd /”; pwd => writes “/home/brent” not “/”
UNLESS they run in the same shell process
FOO=notBAR; echo $FOO ==> writes “notBAR”
Shell built-in commands run without creating a new process
- As opposed to external commands
- The cd command MUST always be implemented as a shell built-in
Because it changes $HOME
- The source or'." commands run a file of commands through the current shell process
No subshell is created
So scripts can affect the current shell's environment when desired
Some other commands are built-ins for speed given their frequency of use
Creating Unix processes is relatively slow and memory intensive
User written programs are always external commands
But user written scripts may be sourced without creating a new shell

Copyright MBARI 2010 \V

- ESPhome is top level (root) directory of ESP source code tree
Default ESPhome=$HOME/esp2

- ESPname is the name of the ESP machine
Determines command prompt and which configure.rb to read
-+ Change to masquerade as another ESP machine or for desktop simulations
Default ESPname="hostname’ with any “ESP” prefix removed

- ESPmode is the operating mode in which to run the ESP software
Default ESPmode=real
“real” means real-time with real hardware
- “simfast” means fast as possible with simulated hardware
- “simreal” means real-time with simulated hardware
- “guick” is like simfast, but with minimal console log messages
- These and more are defined in directory $ESPhome/mode as short ruby (.rb) script files
- To run esp once in “quick” (simulation verification) mode:
- ESPmode=quick esp aMissionScriptName

- ESPIog is the root directory under which all data files are written
Default ESPlog=/var/log/$USER
Esp software normally does not write into the $ESPhome source code tree
For simulation on desktop, one must grant $USER access to /var/log/$USER directory
- Or set ESPlog to something under user's home. e.g. $HOME/espLog LI

Copyright MBARI 2010 \V

- ESPpath is a list of directories to search for mission scripts
Default ESPpath=.:$ESPhome/mission:$ESPhome/protocol

- ESPconfigPath is a list of directories to search for configuration files
- ESPconfigPath=$ESPhome/espType/$ESPname:$ESPhome/espType:$ESPhome/admin

EspType is either shallow, mfb, 1km, or 4km
- All espTypes are configuration subdirectories under $ESPhome containing:
- Initialize.rb to configure serial communication ports
Baud rates, stop bits, Unix port names (e.g. /dev/I2Cgate)
- netconfig.rb to map dwarf objects to their real 12C addresses and log monikers
- Also configures 12C gateways (retries, type of CRC protocol, etc.)
- preconfig.rb defines objects that should be machine independent
- e.g. Rotary Valve layouts, solenoids, basic camera config
- $ESPname/configure.rb defines objects whose details are always machine specific
+ Changes can affect only machine $ESPname
- postconfig.rb defines objects that may be machine specific
If they are missing on configure.rb, they get a default definition in postconfig
- e.g. Valve plumbing, tweaks for puck handling
Be very careful when modifying shared configuration files
It's easy to make your machine work while breaking another!

M B 0 R

Copyright MBARI 2010 \V

- RUBYLIB is a list of directories to search for “required” Ruby libraries and scripts
- Typically RUBYLIB=$ESPhome/lib:$ESPhome/utils:$ESPhome/protocol
- Only require “file” uses $RUBYLIB
- require is a core Ruby method
- define or execute “file” use $ESPpath
Because define and execute are ESP specific additions to Ruby

M B 0 R

Copyright MBARI 2010 W

- All directories live under $ESPhome (usually /home/$USER/esp?2)
- .../bin contains executable scripts that may be invoked from the Unix shell
- Some are implemented as shell scripts, others are Ruby scripts used as commands
- esp, espclient, showlog, etc.
- The ESPenv script automatically assigns ESP environment variables
Recall ESPenv must be “sourced” into the current shell with "." or 'source’ built-ins
Usually sourced (read and executed) automatically in the shell's .profile script
profile is automatically sourced by bash and ash when they are started
File names beginning with dot are hidden
- View them with Is -a #list all files
- All arguments to ESPenv are optional
1% argument is the value for ESPname
Defaults to hostname
- 2" argument is the type of esp deployment (i.e. the espType)
- mfb, shallow, 1km, or 4km
- To simulate a mission on ESPgordon attached to the 4km DWSM:
. ESPenv 4km gordon #don't forget the leading dot

M B 0 R

Copyright MBARI 2010 \V

$ESPhome/I/b contains core Ruby libraries
.../12c contains low-level Ruby scripts to handle 12C bus messaging
- .../dwsm contains primitives for handle the DWSM dpress board and sample bags
- .../elmo contains primitives for driving EImo motor controllers via RS-232 cmds
Used only in the (now obsolete) 1km DWSM
- .../Jgauge contains primitives to drive simple sensors via RS-232
For now, just the 4km DWSM's Stellar digital pressure gauges
- These are core, not contextual, sensors
- .../Instrument contains contextual sensor drivers (and PCR ?)
- CTD & ISUS
PCR is here too, but that's mainly because Bob Herlien wrote it.
- .../posix Generic drivers for “normal”’ serial ports
- As opposed those accesses via Dwarves, which are found in .../i2c

M B 0 R

Copyright MBARI 2010 \V

- $ESPhome/lib contains core Ruby libraries and hardware drivers
- Scheduler, Delay, Threads, Log, Slide, Shaft, Solenoid, Thermal, Clamp, Camera...
- .../i2c contains low-level Ruby scripts to handle 12C bus messaging
- .../dwsm contains primitives for handle the DWSM dpress board and sample bags
- .../elmo contains primitives for driving EImo motor controllers via RS-232 cmds
Used only in the (now obsolete) 1km DWSM
- .../gauge contains primitives to drive simple sensors via RS-232
For now, just the 4km DWSM's Stellar digital pressure gauges
- These are core, not contextual, sensors
- .../iInstrument contains contextual sensor drivers (and PCR ?)
- CTD & ISUS
PCR is here too, but that's mainly because Bob Herlien wrote it.
- .../posix Generic drivers for “normal” serial ports
- As opposed those accesses via Dwarves, which are found in .../i2c

- $ESPhome/utils contains common utilities (directly above core libraries)
romanFlush, calarm, calcar, puckmoves, (shallow) sampler, shuffle, etc.
- .../dwsm contains utilities for 1Lkm DWSM
- .../4km contains utilities specifically for 4km DWSM

M B 0 R

Copyright MBARI 2010 \V

$ESPhome/protocol contains Ruby code implementing science assays
These scripts are intended to be modified by investigators

+ BAC, HAB, LARV, wcr, etc.

- sh2 common to all sandwich hybridization assays

- shl common to most assays that collect samples or make lysate
Utilities common between most assays

- pcrslug, spe, shortmfb for PCR

- DA and DAprocess, PRVprocess for Demoic Acid detection

M B 0 R

Copyright MBARI 2010 \V

- $ESPhome/mission contains top-level scripts that control mission behavior
YyMonthDDname missions
- These scripts are written the day before deployment :-)
- Skeleton mission primitives
Defines the general behavior of all missions
- Also implements simulation behaviors for protocols
Until simulation is (properly) pushed completely into core libraries
dwsm4km mission primitives for 4km DWSM
- Augments skeleton for DWSM
- phasecfg configures mission parameters
- Where to send email messages
How to configure contexual sensors
Default sample volumes and camera parameters for each assay type

Copyright MBARI 2010

- Ivar/log == ftp://espName == top directory of the FTP site
- Don't use the Mac “finder” to browse an ESP's FTP site
- Too much traffic generated for file previews
- Use Firefox or Cyberduck instead.
- Windows MS Explorer is also fine

- /var/log/messages contains Linux kernel messages
- /var/log/vsftpd.log records all FTP site traffic

- Kernel log files grow continuously
- Empty (or truncate) them as user root with
- # > /var/log/messages
- # > /var/log/vsftpd.log
- Do not remove them with the rm command

- /var/log/$USER is top level output directory for each user's ESP data
- May be overridden with $ESPIlog environment variable
- But moving it may remove it from the FTP site hierarchy

- These files are owned by $USER, not user root
M B A R

¢

Copyright MBARI 2010

ftp://espName/

- Actual names and contents determined by settings in configuration files
By default:
.../hires
High resolution camera images (each approx. 3.5 Mbytes)
.../lores
Low resolution camera images
.../midres
Medium resolution camera images
- Typically auto-exposures
- Top directory contains “default” resolution camera images
- Typically fixed exposures

Only files in the top directory are automatically uploaded to shore servers
- To conserve radio link bandwidth
- You may upload selected files is hires or other subdirs manually via scp
If the radio link is of good quality and will not be busy for a while

M B 0 R

Copyright MBARI 2010 \V

*tif = TIFF camera images
- Tagged Image File Format
Examine with ImageJ from http://rsbweb.nih.gov/ij/
It's a nice idea to install imageJ as a “helper” app for TIFFs in your web browser
*pcr = Comma Separated Value PCR data
Formated for direct input into Excel or similar spreadsheet
May also be viewed in a text editor
*.out = console output capture
- Text normally output to the esp interactive console
Redirected here when running non-interactive mission script
l.e. When esp is run with:
- start esp YymonthDayScript
May be monitored with the showlog command
Or viewed in any text editor
File name is the operating mode as in *./og below
*log = detailed, binary esp engineering logs
File name is the operating mode
real.log is the one with real hardware
quick.log is from quick simulation runs
May not be viewed on a text editor

- View with the Ruby dumplog command
M B A R

Copyright MBARI 2010 \V

http://rsbweb.nih.gov/ij/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

