

Copyright MBARI 2010

Environmental Sample Processor
Software Environment Variables

and
File Directory Layout

1/4/10 Brent Roman brent@mbari.org

Copyright MBARI 2010

Unix Command Shells

• All are interpreted, dynamic scripting languages
• Optimized for starting and managing other processes
• Which may in turn be other command shells
• Input may come from user at a terminal or canned script text files

• From “ash” to “zsh” -- many, more or less compatible alternatives

• “sh” -- the original Bourne shell (by Steve Bourne while at Bell Labs)
• “csh” -- 'C'-like, improved on tcsh (by Bill Joy while at UC Berkeley)
• “ksh” -- Kron shell (by David Korn of Bell Labs)
• “bash” -- Bourne Again SHell: GNU's answer to “sh”

• Big, Bloated and Slow with lots of cool, mind bending features
• Default shell on most desktop Linux distros where RAM is plentiful
• And, you OS/X mac heads know it as the “terminal window”

• “rush” -- the RUby SHell: a command shell written in Ruby
• “zsh” -- the Z SHell

• Attempts a synthesis of those that came before
• “ash” -- the A SHell (by Kenneth Almquist)

• Small and very compatible with bash
• Used in many memory constrained or embedded Linux products

• Wi-Fi routers
• Set up boxes
• And, our own ESP !!

Copyright MBARI 2010

Environment Variables

• Each program (or process) runs in an “environment” consisting of:
• Command Line arguments passed explicitly after the command name
• And, environment “variables” or keys associated with text values

• It's easy to create a new one or alter an existing one's value
FOO=BAR

• Most shells use $ prefix to replace environment variable's name with its text value
echo $FOO ==> writes “BAR”

• Environment variables marked for export are inherited from parent process
export FOO=bar; sh -c 'echo $FOO' ==> writes “bar”

• Or, they may be passed into a single process much like a command argument
FOO=bar sh -c 'echo $FOO' ==> also writes “bar”
echo $FOO ==> writes “BAR”

• The env command lists all environment variables

• Common environment variables
• HOME=Current working directory

• Changed with the cd shell built-in command
• PATH=Colon separated list of directories to search for executable files with no leading /
• USER=User's login name
• DISPLAY=machine:screen# (where X-windows sends graphics)

typically localhost:0 # the first local screen

Copyright MBARI 2010

Propagating Environment
Variables

• Processes can change their own environments
• But, they cannot change the environments of others
• Shell scripts that change environment variables don't have any lasting effect

sh -c “FOO=notBAR”; echo $FOO ==> writes “BAR”
sh -c “cd /”; pwd => writes “/home/brent” not “/”

• UNLESS they run in the same shell process
• FOO=notBAR; echo $FOO ==> writes “notBAR”

• Shell built-in commands run without creating a new process
• As opposed to external commands
• The cd command MUST always be implemented as a shell built-in

• Because it changes $HOME
• The source or '.' commands run a file of commands through the current shell process

• No subshell is created
• So scripts can affect the current shell's environment when desired

• Some other commands are built-ins for speed given their frequency of use
• Creating Unix processes is relatively slow and memory intensive

• User written programs are always external commands
• But user written scripts may be sourced without creating a new shell

Copyright MBARI 2010

ESP Environment Variables

• ESPhome is top level (root) directory of ESP source code tree
• Default ESPhome=$HOME/esp2

• ESPname is the name of the ESP machine
• Determines command prompt and which configure.rb to read
• Change to masquerade as another ESP machine or for desktop simulations

• Default ESPname=`hostname` with any “ESP” prefix removed

• ESPmode is the operating mode in which to run the ESP software
• Default ESPmode=real

• “real” means real-time with real hardware
• “simfast” means fast as possible with simulated hardware
• “simreal” means real-time with simulated hardware
• “quick” is like simfast, but with minimal console log messages

• These and more are defined in directory $ESPhome/mode as short ruby (.rb) script files
• To run esp once in “quick” (simulation verification) mode:

• ESPmode=quick esp aMissionScriptName

• ESPlog is the root directory under which all data files are written
• Default ESPlog=/var/log/$USER
• Esp software normally does not write into the $ESPhome source code tree
• For simulation on desktop, one must grant $USER access to /var/log/$USER directory

• Or set ESPlog to something under user's home. e.g. $HOME/espLog

Copyright MBARI 2010

ESP Environment Variables
and Configuration Files

• ESPpath is a list of directories to search for mission scripts
• Default ESPpath=.:$ESPhome/mission:$ESPhome/protocol

• ESPconfigPath is a list of directories to search for configuration files
• ESPconfigPath=$ESPhome/espType/$ESPname:$ESPhome/espType:$ESPhome/admin
• EspType is either shallow, mfb, 1km, or 4km

• All espTypes are configuration subdirectories under $ESPhome containing:
• initialize.rb to configure serial communication ports

• Baud rates, stop bits, Unix port names (e.g. /dev/I2Cgate)
• netconfig.rb to map dwarf objects to their real I2C addresses and log monikers

• Also configures I2C gateways (retries, type of CRC protocol, etc.)
• preconfig.rb defines objects that should be machine independent

• e.g. Rotary Valve layouts, solenoids, basic camera config
• $ESPname/configure.rb defines objects whose details are always machine specific

• Changes can affect only machine $ESPname
• postconfig.rb defines objects that may be machine specific

• If they are missing on configure.rb, they get a default definition in postconfig
• e.g. Valve plumbing, tweaks for puck handling

• Be very careful when modifying shared configuration files
• It's easy to make your machine work while breaking another!

Copyright MBARI 2010

Ruby Environment Variable

• RUBYLIB is a list of directories to search for “required” Ruby libraries and scripts
• Typically RUBYLIB=$ESPhome/lib:$ESPhome/utils:$ESPhome/protocol

• Only require “file” uses $RUBYLIB
• require is a core Ruby method

• define or execute “file” use $ESPpath
• Because define and execute are ESP specific additions to Ruby

Copyright MBARI 2010

ESP Source Code Tree
Executables

• All directories live under $ESPhome (usually /home/$USER/esp2)
• .../bin contains executable scripts that may be invoked from the Unix shell

• Some are implemented as shell scripts, others are Ruby scripts used as commands
• esp, espclient, showlog, etc.

• The ESPenv script automatically assigns ESP environment variables
• Recall ESPenv must be “sourced” into the current shell with '.' or 'source' built-ins
• Usually sourced (read and executed) automatically in the shell's .profile script

• .profile is automatically sourced by bash and ash when they are started
• File names beginning with dot are hidden

• View them with ls -a #list all files
• All arguments to ESPenv are optional
• 1st argument is the value for ESPname

• Defaults to hostname
• 2nd argument is the type of esp deployment (i.e. the espType)

• mfb, shallow, 1km, or 4km
• To simulate a mission on ESPgordon attached to the 4km DWSM:

• . ESPenv 4km gordon #don't forget the leading dot

Copyright MBARI 2010

ESP Source Code Tree
Core Ruby Libraries

• $ESPhome/lib contains core Ruby libraries
• .../i2c contains low-level Ruby scripts to handle I2C bus messaging
• .../dwsm contains primitives for handle the DWSM dpress board and sample bags
• .../elmo contains primitives for driving Elmo motor controllers via RS-232 cmds

• Used only in the (now obsolete) 1km DWSM
• .../gauge contains primitives to drive simple sensors via RS-232

• For now, just the 4km DWSM's Stellar digital pressure gauges
• These are core, not contextual, sensors

• .../instrument contains contextual sensor drivers (and PCR ?)
• CTD & ISUS
• PCR is here too, but that's mainly because Bob Herlien wrote it.

• .../posix Generic drivers for “normal” serial ports
• As opposed those accesses via Dwarves, which are found in .../i2c

Copyright MBARI 2010

ESP Source Code Tree
Core Ruby Libraries and Utilities

• $ESPhome/lib contains core Ruby libraries and hardware drivers
• Scheduler, Delay, Threads, Log, Slide, Shaft, Solenoid, Thermal, Clamp, Camera...
• .../i2c contains low-level Ruby scripts to handle I2C bus messaging
• .../dwsm contains primitives for handle the DWSM dpress board and sample bags
• .../elmo contains primitives for driving Elmo motor controllers via RS-232 cmds

• Used only in the (now obsolete) 1km DWSM
• .../gauge contains primitives to drive simple sensors via RS-232

• For now, just the 4km DWSM's Stellar digital pressure gauges
• These are core, not contextual, sensors

• .../instrument contains contextual sensor drivers (and PCR ?)
• CTD & ISUS
• PCR is here too, but that's mainly because Bob Herlien wrote it.

• .../posix Generic drivers for “normal” serial ports
• As opposed those accesses via Dwarves, which are found in .../i2c

• $ESPhome/utils contains common utilities (directly above core libraries)
• romanFlush, calarm, calcar, puckmoves, (shallow) sampler, shuffle, etc.
• .../dwsm contains utilities for 1km DWSM

• .../4km contains utilities specifically for 4km DWSM

Copyright MBARI 2010

ESP Source Code Tree
Science Protocols

• $ESPhome/protocol contains Ruby code implementing science assays
• These scripts are intended to be modified by investigators
• BAC, HAB, LARV, wcr, etc.
• sh2 common to all sandwich hybridization assays
• sh1 common to most assays that collect samples or make lysate
• Utilities common between most assays
• pcrslug, spe, shortmfb for PCR
• DA and DAprocess, PRVprocess for Demoic Acid detection

Copyright MBARI 2010

ESP Source Code Tree
Mission Scripts

• $ESPhome/mission contains top-level scripts that control mission behavior
• YyMonthDDname missions

• These scripts are written the day before deployment :-)
• skeleton mission primitives

• Defines the general behavior of all missions
• Also implements simulation behaviors for protocols

• Until simulation is (properly) pushed completely into core libraries
• dwsm4km mission primitives for 4km DWSM

• Augments skeleton for DWSM
• phasecfg configures mission parameters

• Where to send email messages
• How to configure contexual sensors
• Default sample volumes and camera parameters for each assay type

Copyright MBARI 2010

ESP Log File and FTP site
Directory Layout

• /var/log == ftp://espName == top directory of the FTP site
• Don't use the Mac “finder” to browse an ESP's FTP site

• Too much traffic generated for file previews
• Use Firefox or Cyberduck instead.

• Windows MS Explorer is also fine

• /var/log/messages contains Linux kernel messages
• /var/log/vsftpd.log records all FTP site traffic
•

• Kernel log files grow continuously
• Empty (or truncate) them as user root with

• # > /var/log/messages
• # > /var/log/vsftpd.log

• Do not remove them with the rm command

• /var/log/$USER is top level output directory for each user's ESP data
• May be overridden with $ESPlog environment variable
• But moving it may remove it from the FTP site hierarchy
• These files are owned by $USER, not user root

ftp://espName/

Copyright MBARI 2010

ESP Output Directories

• Actual names and contents determined by settings in configuration files
• By default:

• .../hires
• High resolution camera images (each approx. 3.5 Mbytes)

• .../lores
• Low resolution camera images

• .../midres
• Medium resolution camera images
• Typically auto-exposures

• Top directory contains “default” resolution camera images
• Typically fixed exposures

• Only files in the top directory are automatically uploaded to shore servers
• To conserve radio link bandwidth
• You may upload selected files is hires or other subdirs manually via scp

• If the radio link is of good quality and will not be busy for a while

Copyright MBARI 2010

ESP Output File Types

• *.tif = TIFF camera images
• Tagged Image File Format
• Examine with ImageJ from http://rsbweb.nih.gov/ij/
• It's a nice idea to install imageJ as a “helper” app for TIFFs in your web browser

• *.pcr = Comma Separated Value PCR data
• Formated for direct input into Excel or similar spreadsheet
• May also be viewed in a text editor

• *.out = console output capture
• Text normally output to the esp interactive console
• Redirected here when running non-interactive mission script

• i.e. When esp is run with:
• start esp YymonthDayScript

• May be monitored with the showlog command
• Or viewed in any text editor

• File name is the operating mode as in *.log below
• *.log = detailed, binary esp engineering logs

• File name is the operating mode
• real.log is the one with real hardware
• quick.log is from quick simulation runs
• May not be viewed on a text editor
• View with the Ruby dumplog command

http://rsbweb.nih.gov/ij/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

