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Environmental Sample Processor:
Things that go “bump” in the night
(understanding error messages :-)

9/3/10 Brent Roman   brent@mbari.org
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Errors are Unhandled Exceptions
• Great.  So, what is an Unhandled Exception?

• Exceptions are:
• Unusual conditions that obstruct the normal flow of a program
• Handled by special code outside the usual flow

• In modern languages, when a method cannot return a valid value...
• It “throws” (or “raises”) an exception instead!

• 10/0 => ZeroDivisionError
• Math.sqrt(-1) => ArgumentError:  square root for number < 0
• Math.sqrt() => ArgumentError: wrong # of arguments(0 for 1)

• Exceptions propagate up the call stack in search of their “handler”
• Handler code may be very specific or generic

• If no handler is found, the exception becomes an Error.
• Actually, the top level of code has a generic Exception handler
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Ruby Exception Objects
• Consist of:

•  a text message describing the exception
• A backtrace to locate the point of failure in nested methods
• Subclasses may (and do) associate extra information

• e.g.  The servo status associated with Slide::Error

• Only subclasses of built-in Exception class may be raised or thrown
• One cannot throw a Thread or an Integer, etc.
• Exceptions are otherwise just like any other Ruby object
• Exceptions are always raised on a specific Thread

• Ruby's “rescue” clause encloses all exception handlers
• If no matching rescue clause found, the thread is quietly terminated

• It's a good practice to put a generic handler at the highest level
• Otherwise, you won't know what exception was unhandled!
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Deriving Ruby Exception Objects
• Define my own error (exception) class and raise it

• class MyErr < StandardError; end
• raise MyErr.new “Your honor, I respectfully object!”

• Define a Slide::Error with associated (servo status) reply and axis:

class Slide < LinearAxis
  class Error < LinearAxis::Error
    def initialize text, axis, reply=nil
      @reply = reply
      super text, axis
    end
    attr_reader :reply    
  end

• So, in addition to the base Exception's backtrace and message
Slide::Error exceptions support reply and axis methods
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Exception Class Hierarchy

• ArgumentError.ancestors =>
[ArgumentError, StandardError, Exception, Object, … ] 
 

• Slide::Error.ancestors =>
[Slide::Error, LinearAxis::Error, Axis::Error, AxisKernel::Error, 

StandardError, Exception, Object, … ]

• NameError.ancestors =>
• [NameError, ScriptError, Exception, Object, … ]

• An example of a class that cannot be raised as an Exception:
• Float.ancestors =>

[Float, Precision, Numeric, Comparable, Object, ...]
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Backtraces
• Answers the question:  Where was the exception raised?
• Example:  

ESPmack:011:0> CC.to :spoon   #there is no spoon
Axis::Error in quick -- Unknown Collection Clamp position: spoon

ESPmack:012:0> backtrace
/home/brent/esp2/lib/axis.rb:346:in `baseRaw'  #innermost is the “raise” method call
/home/brent/esp2/lib/axis.rb:164:in `raw'
/home/brent/esp2/lib/axis.rb:159:in `fetch'
/home/brent/esp2/lib/axismap.rb:147:in `fetch'
/home/brent/esp2/lib/axismap.rb:147:in `fetch'
/home/brent/esp2/lib/axis.rb:152:in `fetch'
/home/brent/esp2/lib/axis.rb:159:in `raw'
/home/brent/esp2/lib/axis.rb:382:in `raw'
/home/brent/esp2/lib/slide.rb:250:in `seek'
/home/brent/esp2/lib/slide.rb:299:in `moveTo'
(ESP):11   #this is the eleventh command the user typed
/usr/local/lib/ruby/1.6/irb/workspace.rb:55:in `irb_binding'
/usr/local/lib/ruby/1.6/irb/workspace.rb:55

=> #<Axis::Error: Unknown Collection Clamp position: spoon>

  Use your text editor to seek to line numbers in each file ref'd 
In vi, simply enter a line number at the : prompt
In nedit, type control-L to type line number into a dialog box



 
Copyright MBARI 2010

 

Rescuing Ruby Exceptions
• Exception handlers are just blocks of code within a rescue clause

def safeDivide num,den
  begin
      num/den
  rescue ZeroDivisionError   #handle div by 0
      puts "Can't divide by zero"
  rescue StandardError  => err   #handle most others
      puts err
  end
end

• The exception's derived class determines how it is handled
• Not the message text

• Text messages are for humans to interpret
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ESP Top-Level Exception Handling
• Each ESP thread has an associated queue of unhandled exceptions

• Thread[name].exception => list of most recent errors
• Only the most recent 10 or so unhandled exceptions are preserved
• The last is the most recent, the first is the oldest
• puts Thread[name].exception displays all thread's recent errors 

• The backtrace method with no arguments method displays
Thread.current.exception.last.backtrace

• backtrace :name  displays
Thread[:name].exception.last.backtrace

• backtrace thread  displays
thread.exception.last.backtrace

• e.g.  backtrace MainThread == backtrace :MAIN

• To save the 2nd to last error (prevent losing it off the queue)
myErr = thread.exception[-2]

• Later use:  backtrace myErr to display exception's backtrace
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Ruby Script Errors
• NameError ==>  specified method or variable is not defined

• SyntaxError  ==>  grammatical error
puts "foo" If 3>2   #If should be lowercase if

• LoadError ==> cannot process specified Ruby script file
execute “missingFile”

• Only the above errors will always require that Ruby script be edited.



 
Copyright MBARI 2010

 

Generic Runtime Ruby Errors
• ArgumentError  ==>  number and/or class of objects being passed

into a method are incompatible with its definition

• TypeError ==> method does not handle the type of object passed in

• Interrupt ==> Linux kill signal sent to Ruby process

• IRB::Abort ==> Control-C pressed on interactive console

• RuntimeError ==> generic error (text message will describe it)
• raise “something bad's happened”  #raises a RuntimeError

• ZeroDivisionError ==> e.x. 10/0

• None of the above necessary require script changes to fix
• Just changing objects may suffice
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Internal ESP logging errors

These errors indicate serious bugs or configuration problems

• Log::CannotDump  ==>  attempt to log object containing files or procs
Certain objects cannot be converted to a byte stream

• Log::Error ==> other internal error

• Log::Reader::Error ==> invalid log file format encountered by dumplog
• May be caused by read log from different type of ESP

• i.e.  trying to dump a standard core's log from an MFB
• Or trying to dump MFB equipped ESP's log from one lacking MFB
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Scheduler Errors
• Schedule::Error  ==>  time is in the past

trying to schedule an operation (or delay) before current time

• Schedule::Stop ==> scheduler has been stopped by error or user
produced as ESP app terminates (no recovery possible)   

• Delay::Error ==> invalid duration syntax
e.g.  delay “1 fortnight”
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Thread Errors
• Thread::Aborted  ==>  another thread requested this one be aborted

t.abort   #raises Thread::Abort in thread t

• Thread::ParentDied ==> the thread that spawned us had a fatal error
Thread::ChildDied ==> a thread this one spawned had a fatal error

Child threads may “orphan” themselves to avoid these errors

• Thread::Checkpoint::Resume ==> user should never see this...
exception raised in a moribund thread to resume it
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I2C Bus Errors
• I2C::DuplicateAddress::Error  ==>  two dwarves have same address

check dwaves' dip switches very carefully
• I2C::LAN::NoGateway::Error ==> network lacks a I2C gateway

configuration error – not generally recoverable
• I2C::Parser::Error ==> response sent by dwarf improperly formatted

• could be caused by very outdated firmware or electrical noise
• I2C::Request::Timeout ==> expected response not received in time

usually indicates a motor or sensor is failing – not a network failure
• I2C::UnexpectedReply ==> received unexpected dwarf response

May happen when rapidly logging data.  Unexpected replies ignored.
• I2C::NodeOffline ==> dwarf is not responding to its address

This is a network problem
• I2C::MsgErr ==> host is trying to send improperly formatted message

Also (regularly) occurs in simulation on “unmodeled” operations
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I2C Message Processing Errors
• I2C::Solenoid::Error  ==>  trying to send invalid solenoid control msg

likely a bug in lib/solenoid.rb
• I2C::Servo::Error ==> trying to send invalid servo control message

likely a bug in lib/slide.rb or very outdated dwarf firmware
• I2C::Shaft::Error ==> trying to send invalid rotary valve control msg

likely a bug in lib/shaft.rb
• I2C::SerialPort::Error ==> trying to send invalid dwarf serial port msg

likely a bug in lib/serialport.rb
• I2C::SerialPort::Configuration::Error ==> invalid RS232 configuration

unsupported port baud rate, parity, etc.
• I2C::RS232Port::Error ==> invalid dwarf RS232 serial port config

 port baud rate, parity, stop bits, etc.
• I2C::RS232Port::ReadError ==> dwarf received garbled serial data

parity or framing errors usually indicate wrong baud rate or cabling
• I2C::Thermal::Error ==> trying to send invalid thermal control message
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Contextual Sensor Errors
• Instrument::ISUS::NoACK  ==>  ISUS didn't acknowledge cmd receipt

cabling problem?
• Instrument::CTDSample::Error ==> corrupt sample received

likely trying to run a new v2 CTD with old Ruby driver
• Instrument::CTD::NotWhileLoggingError ==> can't sample if logging

CTD should never be put into autonomous logging mode
• Instrument::CTDCore::CalFileMismatch ==> bad seabird cal file

or a valid cal file given the wrong file name
• Instrument::CTD::Warning ==> missing cal file

will still log data, but engineering units are suspect
• Instrument::ReadTimeout ==> instrument did not respond in time

 check cables, batteries, try CTD or ISUS.term
• Instrument::NoDataError ==> no sample available (yet)
• Instrument::Sample::Error ==> generic sample error
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Axis Errors
• AxisKernel::Missing  ==>  some dwarf did not respond to role call

check I2C and power cabling, verify configure.rb matches hardware
• AxisKernel::Error ==> trying to define the same axis object twice

likely a bug problem with your configure.rb file

• Linear or Rotary Axis::Error ==> seeking unknown position
could be high level protocol bug or missing info in configure.rb

• Slide::Error ==> not yet homed or other servo error
likely missing ESP.ready!, mechanical problem or servo out of tune

• Scale::Error ==> invalid Scale object configuration
• lacking 2 numeric positions or have numeric aliases for same position

• Clamp::VelocityError ==>  puck detection algorithm failed
e.g.  Clamp never reached plateau velocity
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Valve Errors
• Valve::Error  ==>  configuration error or selecting undefined position

if during configuration, two positions likely have the same name

• Valve::Manifold::Error ==> config error or selecting undefined valve
if during configuration, two valves likely have the same name

• Solenoid::Error ==> low-level configuration error
likely a low-level solenoid type is defined ambiguously
i.e.  two states sharing the same name
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Puck, Clamp & Arm Errors
• Puck::Error  ==>  one of various high-level sanity checks failed

Puck counting logic detected a misplaced puck
Failure to specify type of puck to load or unload
Unspecified Source or Destination tube number
Out of pucks  (emptied tube 7)

• Puck::Warning ==> specified puck type does not match that in clamp
you explicitly specify unload an :sh2, but you'd loaded an :sh1 puck
Not fatal, just a warning written to the log

• Clamp::Error ==> clamp open/closed inappropriately or missing puck
likely someone left a puck in a clamp or forget to put one there

Clamp::VelocityError ==>  puck detection algorithm failed
 e.g.  Clamp never reached plateau velocity

• Arm::Error ==> failure in Arm.stretch!
Forearm may be mechanically jammed, unable to reach stops



 
Copyright MBARI 2010

 

Thread::Checkpoint
• Each Checkpoint contains a specific thread's complete call stack

• ESP's Checkpoints are built upon Ruby's standard “Continuations”
• Plus a timestamp and a backtrace

• Threads can thus be “resumed” from when the ckpt was stored
• Global $variables are not stored, nor any other thread's variables

• Nor is the physical state of the ESP somehow “stored” !!!
• Log.record “text” creates a checkpoint called “text” as a side effect
• Many errors create checkpoints just before stopping the thread

• Such stopped threads are said to be “moribund”

• Without checkpoints, the only recourse is to restart from scratch
• With a mission custom coded to pick up from the current state

• With a checkpoint, one must only restore the ESP's state to one 
consistent with conditions as of the time the checkpoint was created.
• Often, valves must be correctly set – but it can also be more subtle!

• Checkpoints cannot be used to resurrect a terminated thread
• Threads to be resumed must be suspended or “moribund”
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Managing Checkpoints
• Checkpoint objects are large.  Old ones are not usually relevant

• So, for each thread, only the last 10 or so are retained in a queue
• If you want to save one “forever”, just assign it to a variable

• puts thread.progress   #displays that thread's last few checkpoints
e.g.  puts MainThread.progress 

puts Thread[:sh2].progress
• The most recent is the last line output

• thread.checkpoint returns an array of checkpoints
• thread.checkpoint.last (or .[-1]) is the most recent
• thread.checkpoint[-2] is the 2nd most recent
• thread.checkpoint.first (or .[0]) is the oldest recorded
• thread.checkpoint[1] is the 2nd oldest

• These operations are common to all Ruby arrays
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Resuming from Checkpoints
• thread.resume is equivalent to thread.checkpoint.last.resume
• thread.resume(-2)  ==  thread.checkpoint[-2].resume
• How would you resume from the oldest recorded checkpoint?

• thread.recover is equivalent to thread.error.last.checkpoint.resume
• thread.recover(-2) == thread.error[-2].checkpoint.resume

• thread.recover is easiest to use
• Because the ESP's state need not be “rewound”
• By definition, the thread stopped just after the most resent error
• But, beware of clean up operations that might have altered ESP state

• e.g.  Turning off heaters, closing outer valves, etc.

• Not all errors have associated checkpoints
• eg.  NameError, SyntaxError, LoadError, etc.
• Such errors are not “recoverable”

• thread.recover will fail if thread.error.last.checkpoint == nil
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Resuming from Checkpoints (cont'd)

• One can change global variables while threads are moribund
• To reset parameters that caused the error, etc.

• One cannot change local variables.
• The stack embedded in the checkpoint is immutable until resumed

• However, one can even patch code!
• But, not for any methods that are on the checkpoint's stack.

• One must back up to a checkpoint before the 
method(s) being patched were called.

• Modify the file(s) containing those methods
• Reload the methods with the “define” or “reload” commands:

• define “filename”
• reload  method :methodName
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Complications Resuming Checkpoints

• Restoring ESP's hardware state is straightforward 
• Usually it suffices to move actuators (valves, etc.) back to where

they were at the checkpoint's timestamp
• Scan the log backward from the checkpoint's timestamp to 

determine the position of all relevant actuators.

• Restoring software state, however, may be tricky!
• What resources did the thread own at the checkpoint's timestamp?
• Are they exactly the some as those the moribund thread owns now?

• Moribund threads keep certain resources
• Arm, FlushPuck, are kept to prevent other threads' interfering.

• But heaters are relinquished (shut off)
• To conserve power and avoid damage.

• Note that files being read or written cannot be reread or rewritten.
• Not usually a problem in practice...
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Resuming Arm/Puck Operations

• No problem if resuming from a checkpoint where the Arm/FlushPuck
is owned by the same thread(s) at the checkpoint timestamp as now.

• Otherwise, one needs to change ownership to match that expected
at the checkpoint timestamp.
• First acquire the resources, move pucks, then set new owner

• Acquire with:  Resource.changeOwner Thread.current, :force
• Move pucks around as needed to make ready to resume
• If Arm was owned by another thread at checkpoint timestamp:

• Resource.changeOwner newOwningThread
• Otherwise

• Resource.relinquish

• Above, the “resource” is typically either the Arm or the FlushPuck
• e.g.  Acquire with:  

FlushPuck.changeOwner Thread.current, :force
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Resuming Heating Operations

• Heaters usually turn off if an error occurs in whatever 
thread owns them.

• No problem if checkpoint timestamp is before heating began
• Because the thread will reacquire heater ownership

• Otherwise, one must return the heater to the thread being resumed
• Verify that heater is no longer owned by moribund thread

• e.g.  Heater.owner  #should be either nil or the moribund thread
• If Heater.owner is nil, it will be necessary to:

• Repeat commands necessary to restore heater temperature.
• It may also be necessary to wait until temp. stabilizes.

• Give control of the heater back to the moribund thread
• Heater.owner = threadBeingResumed

• Resume the thread
• Heater will be one of CH, PH, SPE, etc.
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