

Copyright MBARI 2010

Environmental Sample Processor:
Things that go “bump” in the night
(understanding error messages :-)

9/3/10 Brent Roman brent@mbari.org

Copyright MBARI 2010

Errors are Unhandled Exceptions
• Great. So, what is an Unhandled Exception?

• Exceptions are:
• Unusual conditions that obstruct the normal flow of a program
• Handled by special code outside the usual flow

• In modern languages, when a method cannot return a valid value...
• It “throws” (or “raises”) an exception instead!

• 10/0 => ZeroDivisionError
• Math.sqrt(-1) => ArgumentError: square root for number < 0
• Math.sqrt() => ArgumentError: wrong # of arguments(0 for 1)

• Exceptions propagate up the call stack in search of their “handler”
• Handler code may be very specific or generic

• If no handler is found, the exception becomes an Error.
• Actually, the top level of code has a generic Exception handler

Copyright MBARI 2010

Ruby Exception Objects
• Consist of:

• a text message describing the exception
• A backtrace to locate the point of failure in nested methods
• Subclasses may (and do) associate extra information

• e.g. The servo status associated with Slide::Error

• Only subclasses of built-in Exception class may be raised or thrown
• One cannot throw a Thread or an Integer, etc.
• Exceptions are otherwise just like any other Ruby object
• Exceptions are always raised on a specific Thread

• Ruby's “rescue” clause encloses all exception handlers
• If no matching rescue clause found, the thread is quietly terminated

• It's a good practice to put a generic handler at the highest level
• Otherwise, you won't know what exception was unhandled!

Copyright MBARI 2010

Deriving Ruby Exception Objects
• Define my own error (exception) class and raise it

• class MyErr < StandardError; end
• raise MyErr.new “Your honor, I respectfully object!”

• Define a Slide::Error with associated (servo status) reply and axis:

class Slide < LinearAxis
 class Error < LinearAxis::Error
 def initialize text, axis, reply=nil
 @reply = reply
 super text, axis
 end
 attr_reader :reply
 end

• So, in addition to the base Exception's backtrace and message
Slide::Error exceptions support reply and axis methods

Copyright MBARI 2010

Exception Class Hierarchy

• ArgumentError.ancestors =>
[ArgumentError, StandardError, Exception, Object, …]

• Slide::Error.ancestors =>
[Slide::Error, LinearAxis::Error, Axis::Error, AxisKernel::Error,

StandardError, Exception, Object, …]

• NameError.ancestors =>
• [NameError, ScriptError, Exception, Object, …]

• An example of a class that cannot be raised as an Exception:
• Float.ancestors =>

[Float, Precision, Numeric, Comparable, Object, ...]

Copyright MBARI 2010

Backtraces
• Answers the question: Where was the exception raised?
• Example:

ESPmack:011:0> CC.to :spoon #there is no spoon
Axis::Error in quick -- Unknown Collection Clamp position: spoon

ESPmack:012:0> backtrace
/home/brent/esp2/lib/axis.rb:346:in `baseRaw' #innermost is the “raise” method call
/home/brent/esp2/lib/axis.rb:164:in `raw'
/home/brent/esp2/lib/axis.rb:159:in `fetch'
/home/brent/esp2/lib/axismap.rb:147:in `fetch'
/home/brent/esp2/lib/axismap.rb:147:in `fetch'
/home/brent/esp2/lib/axis.rb:152:in `fetch'
/home/brent/esp2/lib/axis.rb:159:in `raw'
/home/brent/esp2/lib/axis.rb:382:in `raw'
/home/brent/esp2/lib/slide.rb:250:in `seek'
/home/brent/esp2/lib/slide.rb:299:in `moveTo'
(ESP):11 #this is the eleventh command the user typed
/usr/local/lib/ruby/1.6/irb/workspace.rb:55:in `irb_binding'
/usr/local/lib/ruby/1.6/irb/workspace.rb:55

=> #<Axis::Error: Unknown Collection Clamp position: spoon>

 Use your text editor to seek to line numbers in each file ref'd
In vi, simply enter a line number at the : prompt
In nedit, type control-L to type line number into a dialog box

Copyright MBARI 2010

Rescuing Ruby Exceptions
• Exception handlers are just blocks of code within a rescue clause

def safeDivide num,den
 begin
 num/den
 rescue ZeroDivisionError #handle div by 0
 puts "Can't divide by zero"
 rescue StandardError => err #handle most others
 puts err
 end
end

• The exception's derived class determines how it is handled
• Not the message text

• Text messages are for humans to interpret

Copyright MBARI 2010

ESP Top-Level Exception Handling
• Each ESP thread has an associated queue of unhandled exceptions

• Thread[name].exception => list of most recent errors
• Only the most recent 10 or so unhandled exceptions are preserved
• The last is the most recent, the first is the oldest
• puts Thread[name].exception displays all thread's recent errors

• The backtrace method with no arguments method displays
Thread.current.exception.last.backtrace

• backtrace :name displays
Thread[:name].exception.last.backtrace

• backtrace thread displays
thread.exception.last.backtrace

• e.g. backtrace MainThread == backtrace :MAIN

• To save the 2nd to last error (prevent losing it off the queue)
myErr = thread.exception[-2]

• Later use: backtrace myErr to display exception's backtrace

Copyright MBARI 2010

Ruby Script Errors
• NameError ==> specified method or variable is not defined

• SyntaxError ==> grammatical error
puts "foo" If 3>2 #If should be lowercase if

• LoadError ==> cannot process specified Ruby script file
execute “missingFile”

• Only the above errors will always require that Ruby script be edited.

Copyright MBARI 2010

Generic Runtime Ruby Errors
• ArgumentError ==> number and/or class of objects being passed

into a method are incompatible with its definition

• TypeError ==> method does not handle the type of object passed in

• Interrupt ==> Linux kill signal sent to Ruby process

• IRB::Abort ==> Control-C pressed on interactive console

• RuntimeError ==> generic error (text message will describe it)
• raise “something bad's happened” #raises a RuntimeError

• ZeroDivisionError ==> e.x. 10/0

• None of the above necessary require script changes to fix
• Just changing objects may suffice

Copyright MBARI 2010

Internal ESP logging errors

These errors indicate serious bugs or configuration problems

• Log::CannotDump ==> attempt to log object containing files or procs
Certain objects cannot be converted to a byte stream

• Log::Error ==> other internal error

• Log::Reader::Error ==> invalid log file format encountered by dumplog
• May be caused by read log from different type of ESP

• i.e. trying to dump a standard core's log from an MFB
• Or trying to dump MFB equipped ESP's log from one lacking MFB

Copyright MBARI 2010

Scheduler Errors
• Schedule::Error ==> time is in the past

trying to schedule an operation (or delay) before current time

• Schedule::Stop ==> scheduler has been stopped by error or user
produced as ESP app terminates (no recovery possible)

• Delay::Error ==> invalid duration syntax
e.g. delay “1 fortnight”

Copyright MBARI 2010

Thread Errors
• Thread::Aborted ==> another thread requested this one be aborted

t.abort #raises Thread::Abort in thread t

• Thread::ParentDied ==> the thread that spawned us had a fatal error
Thread::ChildDied ==> a thread this one spawned had a fatal error

Child threads may “orphan” themselves to avoid these errors

• Thread::Checkpoint::Resume ==> user should never see this...
exception raised in a moribund thread to resume it

Copyright MBARI 2010

I2C Bus Errors
• I2C::DuplicateAddress::Error ==> two dwarves have same address

check dwaves' dip switches very carefully
• I2C::LAN::NoGateway::Error ==> network lacks a I2C gateway

configuration error – not generally recoverable
• I2C::Parser::Error ==> response sent by dwarf improperly formatted

• could be caused by very outdated firmware or electrical noise
• I2C::Request::Timeout ==> expected response not received in time

usually indicates a motor or sensor is failing – not a network failure
• I2C::UnexpectedReply ==> received unexpected dwarf response

May happen when rapidly logging data. Unexpected replies ignored.
• I2C::NodeOffline ==> dwarf is not responding to its address

This is a network problem
• I2C::MsgErr ==> host is trying to send improperly formatted message

Also (regularly) occurs in simulation on “unmodeled” operations

Copyright MBARI 2010

I2C Message Processing Errors
• I2C::Solenoid::Error ==> trying to send invalid solenoid control msg

likely a bug in lib/solenoid.rb
• I2C::Servo::Error ==> trying to send invalid servo control message

likely a bug in lib/slide.rb or very outdated dwarf firmware
• I2C::Shaft::Error ==> trying to send invalid rotary valve control msg

likely a bug in lib/shaft.rb
• I2C::SerialPort::Error ==> trying to send invalid dwarf serial port msg

likely a bug in lib/serialport.rb
• I2C::SerialPort::Configuration::Error ==> invalid RS232 configuration

unsupported port baud rate, parity, etc.
• I2C::RS232Port::Error ==> invalid dwarf RS232 serial port config

 port baud rate, parity, stop bits, etc.
• I2C::RS232Port::ReadError ==> dwarf received garbled serial data

parity or framing errors usually indicate wrong baud rate or cabling
• I2C::Thermal::Error ==> trying to send invalid thermal control message

Copyright MBARI 2010

Contextual Sensor Errors
• Instrument::ISUS::NoACK ==> ISUS didn't acknowledge cmd receipt

cabling problem?
• Instrument::CTDSample::Error ==> corrupt sample received

likely trying to run a new v2 CTD with old Ruby driver
• Instrument::CTD::NotWhileLoggingError ==> can't sample if logging

CTD should never be put into autonomous logging mode
• Instrument::CTDCore::CalFileMismatch ==> bad seabird cal file

or a valid cal file given the wrong file name
• Instrument::CTD::Warning ==> missing cal file

will still log data, but engineering units are suspect
• Instrument::ReadTimeout ==> instrument did not respond in time

 check cables, batteries, try CTD or ISUS.term
• Instrument::NoDataError ==> no sample available (yet)
• Instrument::Sample::Error ==> generic sample error

Copyright MBARI 2010

Axis Errors
• AxisKernel::Missing ==> some dwarf did not respond to role call

check I2C and power cabling, verify configure.rb matches hardware
• AxisKernel::Error ==> trying to define the same axis object twice

likely a bug problem with your configure.rb file

• Linear or Rotary Axis::Error ==> seeking unknown position
could be high level protocol bug or missing info in configure.rb

• Slide::Error ==> not yet homed or other servo error
likely missing ESP.ready!, mechanical problem or servo out of tune

• Scale::Error ==> invalid Scale object configuration
• lacking 2 numeric positions or have numeric aliases for same position

• Clamp::VelocityError ==> puck detection algorithm failed
e.g. Clamp never reached plateau velocity

Copyright MBARI 2010

Valve Errors
• Valve::Error ==> configuration error or selecting undefined position

if during configuration, two positions likely have the same name

• Valve::Manifold::Error ==> config error or selecting undefined valve
if during configuration, two valves likely have the same name

• Solenoid::Error ==> low-level configuration error
likely a low-level solenoid type is defined ambiguously
i.e. two states sharing the same name

Copyright MBARI 2010

Puck, Clamp & Arm Errors
• Puck::Error ==> one of various high-level sanity checks failed

Puck counting logic detected a misplaced puck
Failure to specify type of puck to load or unload
Unspecified Source or Destination tube number
Out of pucks (emptied tube 7)

• Puck::Warning ==> specified puck type does not match that in clamp
you explicitly specify unload an :sh2, but you'd loaded an :sh1 puck
Not fatal, just a warning written to the log

• Clamp::Error ==> clamp open/closed inappropriately or missing puck
likely someone left a puck in a clamp or forget to put one there

Clamp::VelocityError ==> puck detection algorithm failed
 e.g. Clamp never reached plateau velocity

• Arm::Error ==> failure in Arm.stretch!
Forearm may be mechanically jammed, unable to reach stops

Copyright MBARI 2010

Thread::Checkpoint
• Each Checkpoint contains a specific thread's complete call stack

• ESP's Checkpoints are built upon Ruby's standard “Continuations”
• Plus a timestamp and a backtrace

• Threads can thus be “resumed” from when the ckpt was stored
• Global $variables are not stored, nor any other thread's variables

• Nor is the physical state of the ESP somehow “stored” !!!
• Log.record “text” creates a checkpoint called “text” as a side effect
• Many errors create checkpoints just before stopping the thread

• Such stopped threads are said to be “moribund”

• Without checkpoints, the only recourse is to restart from scratch
• With a mission custom coded to pick up from the current state

• With a checkpoint, one must only restore the ESP's state to one
consistent with conditions as of the time the checkpoint was created.
• Often, valves must be correctly set – but it can also be more subtle!

• Checkpoints cannot be used to resurrect a terminated thread
• Threads to be resumed must be suspended or “moribund”

Copyright MBARI 2010

Managing Checkpoints
• Checkpoint objects are large. Old ones are not usually relevant

• So, for each thread, only the last 10 or so are retained in a queue
• If you want to save one “forever”, just assign it to a variable

• puts thread.progress #displays that thread's last few checkpoints
e.g. puts MainThread.progress

puts Thread[:sh2].progress
• The most recent is the last line output

• thread.checkpoint returns an array of checkpoints
• thread.checkpoint.last (or .[-1]) is the most recent
• thread.checkpoint[-2] is the 2nd most recent
• thread.checkpoint.first (or .[0]) is the oldest recorded
• thread.checkpoint[1] is the 2nd oldest

• These operations are common to all Ruby arrays

Copyright MBARI 2010

Resuming from Checkpoints
• thread.resume is equivalent to thread.checkpoint.last.resume
• thread.resume(-2) == thread.checkpoint[-2].resume
• How would you resume from the oldest recorded checkpoint?

• thread.recover is equivalent to thread.error.last.checkpoint.resume
• thread.recover(-2) == thread.error[-2].checkpoint.resume

• thread.recover is easiest to use
• Because the ESP's state need not be “rewound”
• By definition, the thread stopped just after the most resent error
• But, beware of clean up operations that might have altered ESP state

• e.g. Turning off heaters, closing outer valves, etc.

• Not all errors have associated checkpoints
• eg. NameError, SyntaxError, LoadError, etc.
• Such errors are not “recoverable”

• thread.recover will fail if thread.error.last.checkpoint == nil

Copyright MBARI 2010

Resuming from Checkpoints (cont'd)

• One can change global variables while threads are moribund
• To reset parameters that caused the error, etc.

• One cannot change local variables.
• The stack embedded in the checkpoint is immutable until resumed

• However, one can even patch code!
• But, not for any methods that are on the checkpoint's stack.

• One must back up to a checkpoint before the
method(s) being patched were called.

• Modify the file(s) containing those methods
• Reload the methods with the “define” or “reload” commands:

• define “filename”
• reload method :methodName

Copyright MBARI 2010

Complications Resuming Checkpoints

• Restoring ESP's hardware state is straightforward
• Usually it suffices to move actuators (valves, etc.) back to where

they were at the checkpoint's timestamp
• Scan the log backward from the checkpoint's timestamp to

determine the position of all relevant actuators.

• Restoring software state, however, may be tricky!
• What resources did the thread own at the checkpoint's timestamp?
• Are they exactly the some as those the moribund thread owns now?

• Moribund threads keep certain resources
• Arm, FlushPuck, are kept to prevent other threads' interfering.

• But heaters are relinquished (shut off)
• To conserve power and avoid damage.

• Note that files being read or written cannot be reread or rewritten.
• Not usually a problem in practice...

Copyright MBARI 2010

Resuming Arm/Puck Operations

• No problem if resuming from a checkpoint where the Arm/FlushPuck
is owned by the same thread(s) at the checkpoint timestamp as now.

• Otherwise, one needs to change ownership to match that expected
at the checkpoint timestamp.
• First acquire the resources, move pucks, then set new owner

• Acquire with: Resource.changeOwner Thread.current, :force
• Move pucks around as needed to make ready to resume
• If Arm was owned by another thread at checkpoint timestamp:

• Resource.changeOwner newOwningThread
• Otherwise

• Resource.relinquish

• Above, the “resource” is typically either the Arm or the FlushPuck
• e.g. Acquire with:

FlushPuck.changeOwner Thread.current, :force

Copyright MBARI 2010

Resuming Heating Operations

• Heaters usually turn off if an error occurs in whatever
thread owns them.

• No problem if checkpoint timestamp is before heating began
• Because the thread will reacquire heater ownership

• Otherwise, one must return the heater to the thread being resumed
• Verify that heater is no longer owned by moribund thread

• e.g. Heater.owner #should be either nil or the moribund thread
• If Heater.owner is nil, it will be necessary to:

• Repeat commands necessary to restore heater temperature.
• It may also be necessary to wait until temp. stabilizes.

• Give control of the heater back to the moribund thread
• Heater.owner = threadBeingResumed

• Resume the thread
• Heater will be one of CH, PH, SPE, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

