

Copyright MBARI 2010

Environmental Sample Processor
I2C Bus Messages

3/3/10 Brent Roman brent@mbari.org

Copyright MBARI 2010

Inter-Integrated Circuit Bus
Basics

• Invented by Philips (now called NXP) in the early 1980's
• Two-wire serial bus: Clock, Data, and common Ground (OK, three wires :-)

• Clock and Data float high via a resistor (or active pullup) for logical '1'
• Driven low (shorted to GND) to represent a logical '0'
• Data rate we use is 100kBits/s – quite slow by today's standard's

• Supports very elegant multi-mastering with transparent collision handling
• If two nodes “talk” simultaneously:

• One of the two transmits successfully, the other retries later
• Better than ethernet, where both nodes must back off and retry.

• Supports up to 127 unique addresses (or nodes)
• Extended to support > 1000, but we use the original standard
• Address 0 is reserved for broadcasting to all attached nodes
• Addresses are preassigned – there is nothing like DHCP

• But, our dwarves do verify that they each are assigned unique addresses
• Intended to be used on large circuit boards or board sets

• Not intended to be transmitted long distances over cables
• But, we've tested our cables to 12 feet w/o incident

• Positive acknowledgement of each byte after it is sent
• Receivers can “extend the clock” to throttle data rate

• Basic Standard has no Cyclic Redundancy Code (error) checking
• We bend the rules by appending an 8-bit CRC to each message
• And, a non-standard 1-bit CRC Message valid ACK (or Nack)

Copyright MBARI 2010

ESP Dwarf I2C messages

• Messages are strings of 8-bit bytes
• Raw bytes are typically displayed in hexadecimal (e.g. 0x20 hex == 32 decimal)

• Three basic message types:
• Commands

• Unacknowledged beyond confirmation of receipt
• Typically used only for configuration messages

• Requests
• Allow the receiver to “talk back” to the requester

• To indicate status and/or tell when a long operation completes
• Requesters do not wait for replies

• Many unrelated messages are interleaved between a given request and its replies
• Each request includes a 7-bit (1..127) “reply tag” to facilitate this

• Replies
• Always refer to a “reply tag” from a previously sent request
• A reply tag is recycled a few seconds after the last reply for it is received

• Otherwise one would run out of unique tags after 126 requests
• There may be more than one reply message to a given request

• Any ESP dwarf may send Commands, Requests and Replies to any other
• But we currently only sent requests to dwarves from the host gateway
• Dwarves only send replies back to the host gateway

Copyright MBARI 2010

ESP I2C Gateways

• Bridges between the I2C bus a single (fast) RS-232 serial port
• All operations pass through
• Gateway has no knowledge of what the bytes “mean”

• Data flows through the gateway without buffering
• Reduces latency and gateway's memory requirements

• RS-232 serial port normally configured for 115.2 kbaud, 8 data bits + 1 stop bit
• CTS/RTS “hardware” flow control required to help ensure against lost data
• Data is binary, not ASCII

• RS-232 “break” condition signals attention
• “I2C Gateway not responding to BREAK” error message

• Means that the host cannot communicate with that gateway
• Gateways are configured from there RS-232 side (by the host)

• Address of the gateway on the I2C bus (typically 0x20)
• Number of retries after errors (typically 3)
• Delay between each retry
• And many other parameters

• A host may communicate with multiple I2C buses
• Each via its own gateway on a dedicated RS-232 serial port
• The ESP-DWSM functions over such an additional, dedicated gateway

• The main I2C bus is the “core” bus.

Copyright MBARI 2010

Some other ESP I2C Bus
Exceptions/Error Messages

• Unexpected ACK | String | etc.
• Low level protocol error, probably due to electrical noise or firmware error

• Address 0x?? already in use
• Two dwarves' dip switches are configured to select the same address

• I2C Bus Error
• Timeout waiting for bus startup
• Invalid bus start
• Slave NACK …
• Master NACK …
• Rejected message's CRC
• CRC was invalid

• Probably an electrical problem on the bus or a misbehaving dwarf
• NodeOffline

• Dwarf is powered off or has been removed from the bus
• Unknown Command, Query, or Reply

• Could be old dwarf firmware being used with new Host Ruby code
• I2C::Request::Timeout errors do not generally indicate an I2C bus problem

• More likely, a valve or motor is stuck
• When a request receives no reply within the expected maximum time

• The request is said to have “timed-out”
• Unexpected Reply

• Results if the ESP software restarted while dwarves had replies pending
• ESP host receives the reply, but doesn't “remember” original request

Copyright MBARI 2010

ESP I2C Bus Error Message
Format

• @16:02:00.06 I2C::Request::Timeout in simfast --
• No Response to I2C::Servo::AbsMove3Request[09:->25] during Processing Clamp move

• I2C::Request::Timeout => Timeout error on an I2C Request message

• Simfast => mode or thread in which error occurred

• No Response to … => details about this particular timeout error
• I2C::Servo::AbsMove3Request => Exact message type
• [tag:source->destination] => addressing information

• Tag => Request tag number
• Source => Sending node (may be omitted for the host)
• Destination => Receiving node (usually a dwarf address)
• All the fields within [square backets] are in hexadecimal !!!

• During … => what operation was being performed when the error occurred

Copyright MBARI 2010

Dwarf DIP Switches

• Each dwarf is functionally identical to every other
• The only difference between them are there 6 DIP switch settings
• The low-order 4 switches determine the dwarf's I2C network address

• The address selected is 0x20 + the 4-bit code selected
• Code 0 (all off) is for debugging only

• Recall the gateway uses address 0x20 !!
• 0x25 => processing dwarf
• 0x26 => manipulator dwarf
• 0x27 => collection dwarf
• 0x28 => puck storage dwarf
• 0x29 => sampler dwarf
• 0x2A => microfluidic block dwarf
• 0x2B => 4km DWSM deep sampler dwarf
• 0x2C => 4km DWSM deep resampler dwarf

• The top two switches select debugging on the dwarf's serial port
• Both off => no debugging input or output on serial port

• (required when an instrument is attached to dwarf's serial port)
• Most significant on => input one-letter debug commands
• 2nd Most significant on => output debug messages on serial port

• Leave top two switches off unless you are debugging

Copyright MBARI 2010

Dwarf One letter debug
commands

• ? => output a very short help message
• i => stop displaying I2C message data
• I => start displaying I2C message data (as binary hexadecimal)
• o => stop displaying detailed servo status for channel 0
• 0 => toggle display of detailed servo status for channel 0
• O => start displaying detailed servo status for channel 0
• l => stop displaying detailed servo status for channel 1
• 1 => toggle display of detailed servo status for channel 1
• L => start displaying detailed servo status for channel 1

•Each letter is acted upon as soon as typed
• There is no “Enter” key

•Note that o is lower-case O and 0 is the number zero.
•Note that l is lower-case L and 1 is the number one.

•Servo performance may suffer if detailed display of status is enabled for
both channels simultaneously

•Debugging data is always input and output at:
• 115.2kBaud, 8 data bits, 1 stop bit

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

