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Mission Scripts and Phases

• Top Level Commands for a deployment
– Often omitted for lab work

• Usually contains a mission method

– Specifies the starting tube number

– Optionally specifies Mission End Time

– Contains any number of mission phases

• Each having a start time
– with optional trigger conditons

• One or more protocols run per phase
– The ESP sleeps between phases 

• Contextual sensors continue being polled
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Protocols

• Protocol scripts do the real work of microbiological assays
– Many canned scripts available:

• HAB = Harmful Agal Bloom
• BAC = Bacterial Assay
• LARV = Larval Assay
• WCR = Whole Cell Archival
• DA = Domoic Acid Assay
• HABDA = combined HAB and DA assay
• STX = Saxitoxin Assay

– All have parameters you may modify to suit your needs

• With default values so you needn't specify everything
– You may also create new protocols using the existing protocols as a 

guide:

• STX was created just last year as a variant of DA
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Example “3peat” QC Mission

mission  startTube: 2,  until:  “6AM 12/18/12”  do

  at "12:40:00 12/14/12" do
   habda {noKill} 
  end
  
  at "12:40:00 12/15/12" do
   habda {noKill} 
  end
  
  at "04:00:00 12/17/12" do
   habda 
  end
 
end

•
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It's Ruby all the way down

• Commands, Missions, Scripts, Protocols, Configuration Files
–  All are written in version 1.8 of the Ruby scripting language

• Learn a little Ruby

    *  Rote memorization fails when something goes wwrong

– Standard on Mac OS, easily installed everywhere else.

• A gentle tutorial:
● https://pine.fm/LearnToProgram/

● The bible:
● http://pragprog.com/book/ruby/programming-ruby

● More (free) choices to suit your learning style:
● http://ruby.about.com/od/tutorialsontheweb/tp/10waysfree.htm

https://pine.fm/LearnToProgram/
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Supported Instruments
• Can => internal environmental sensors within ESP core's housing

• Temperature, humidity, pressure, battery voltage, amperage
• Updates every 10 minutes as long as ESP application runs

• CTD => Seabird SBE 16plus V2 interfaced via RS-232 sensor 1
• Temperature, pressure, conductivity, plus optional...
•  Fluorometer, Transmissometer, Oxygen Sensor (1 of 2 types)

• ISUS => one of two types interfaced via RS-232 sensor 2
• Concentration of nitrate and, optionally, bisulfide
• Support for all manufactured at MBARI

• Some later models from Satlantic  (in use at WHOI)

• TBD = Something new can yet be interfaced as RS-232 sensor 3
• Note:  this port is not currently wired to lid of the can
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Polling Contextual Sensors

• Trickier than it would first seem
• ISUS must synchronize with CTD to receive timely updates
• Sample rate optionally quickens during sampling
• Multiple threads may not access instruments simultaneously
• The Can's internal sensor polling is controlled independently

• ESP explicitly triggers every CTD sample!

• Code is in Polling object in mission/skeleton.rb
• Polling.start  #starts SensorPolling with new parameters
• Polling.stop #stops polling and properly closes instrument files
• Polling.pause   #stops until resumed
• Polling.resume #resumes previous polling schedule if paused

• Instrument shows last sampled state of all Instruments
• CTD, ISUS, Can show last sampled state of each Instrument
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Internal Environmental sensors

• can is short for Sleepy.queryCan --> forces immediate sampling
• can.temperature => internal temp. at top of can in degrees C
• can.humidity => humidity in % of saturation
• can.pressure => internal pressure in psia
• can.voltage => instantaneous battery voltage
• can.current => instantaneous battery load in amps
• can.avgCurrent => averaged battery load in amps
• can.waterAlarm => percent “wet” (0..100) usually < 1
• Wattage is merely can.current * can.voltage

• Sleepy.can accesses most recent sample
• Typically updated every 10 minutes
• Recorded in binary 'real.log' file
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Seabird CTD
• Seabird 16plus V2 CTD with 

• support for fluorometer, transmissometer, oxygen sensor, ...
• Generates file CTD-*.hex of raw samples

• CTD.status   # shows instrument status
• CTD.pumpmode = mode, where mode is either:

• :of, :beforeSample, or :duringSample
• s = CTD.sample  => returns sample object, assigns it to variable s

• s.temperature  => sea temperature in degrees C
• s.conductivity => conductivity in S/m
• s.pressure => pressure in decibars
• s.transmissometer => % optical transmission
• s.beamAttenuation => extinction coefficient in 1/m
• s.sampleTime => time at which this sample was started
• s.dataTime => time at which this sample was finished
• s.depth => depth in meters (derived from pressure)
• s.salinity => salinity in mythical PSUs

• More documentation in lib/instrument/ctd.rb
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ISUS
• ISUS = In-Situ Ultraviolet Spectrometer

• Stores raw spectra in ISUS-*.dat  (MBARI's ISUS only!)
• Logs errors in ISUS-*.err
• Requires temp., salinity & depth from the CTD  !!

• ISUS.status   # shows instrument status
• ISUS.species = 2 (or 3)   #three to include bisufide
• ISUS.fit = 217..240  #spectral fit window in nm (tweak for species)
• ISUS.fromCTD temp, salinity, depth  #update ISUS from CTD
• s=ISUS.sample => sample with most recent values fromCTD

• s.no3 => Nitrate concentration in uM/L
• s.br  =>  Bromide in uM/L
• s.hs =>  Bisulfide in uM/L  (only valid if species>2 and fit tweaked)
• s.sampleTime => when sample was requested
• s.dataTime  => when sample was recorded

• More documentation in lib/instrument/isus.rb
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Parameters controlling 
Contextual Sensor Polling

• $global variables determine instruments' configuration/polling rates
• These may be assigned anytime before Polling.start

• But, usually they get set once in mission/phasecfg.rb
• Missions with :until=>time automatically invoke Polling.start

• CTD
• $ctdPumpMode=:duringSample  #may be :beforeSample or :off
• $ctdInterval=Delay.new “5:00”   #sample CTD every 5 minutes
• $ctdPeriod=Delay.new “1:00:00” #upload CTD data every hour
• $samplingCTDinterval=Delay.new “2:30”  #2x faster ...
• $samplingCTDperiod=Delay.new “30:00” #  while sampling

• ISUS
• $isusSpecies = 2   #ignore sulfides by default (3 to include them)
• $isusFit =217.240  #because Luke says it should be so :-)

• ISUS polling rate is CTD sampling rate + 10 minutes
• ISUS auto-sampling cannot be disabled
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Adaptive Sampling
With Trigger Conditions 
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Traditional ESP Missions

• A sequence of “phases”, each with a prescribed start time
–  Actions predetermined by puck load

• ESP sleeps between phases.  While “asleep”:
– Still monitors contextual sensors
– Still maintains radio context with shore

• All phases began at times prescribed in the mission script
– Start times specified may be absolute or relative

• Relative times specify the “sleep time” between phases

• No adaptive sampling was possible without hand coding it
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Trigger Condition Overview

• Each start time is augmented by a list of trigger conditions
– A phase starts when any of its trigger conditions is true

– The start time can be thought of as the one required trigger condition

• It determines the latest possible starting time for the phase

• Triggers start phases before their scheduled times

– Triggers cannot delay phases beyond their “start times”
– Triggers cannot change the sequence of actions performed

»  Processing sequence is determined by puck load.
• Each trigger condition is reevaluated whenever contextual sensors read

– Sensible, as trigger conditions almost always evaluate sensor data

– This is a convention 
(but, not difficult to circumvent if necessary) 

• Each trigger condition runs in its own Ruby thread
– Failure (e.g. exceptions raised) in any trigger will not affect the others

• You can even patch the code and restart failed trigger conditions

• Or, kill the trigger thread to ensure it does not trigger the phase
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Basic Trigger Conditions 
• Basic Trigger Conditions contain arbitrary true/false expressions

– A threshold value is associated with each

• CTD.temp < threshold

• ISUS.no3 > threshold

• CTD.depth > threshold[0] and CTD.fluor > threshold[1]

– Thresholds need not be scalar values

– Trigger expressions are reevaluated just after each time contextual 
sensors are read while the mission is awaiting conditions

• May be assigned names like Cold, Hot, Fresh, Salty

• Threshold values can be modified at any time
– Via the script itself or the interactively via espclient

– All modifications to thresholds are logged

• Very flexible, but also painfully verbose for complex triggers
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Trigger Thresholds

• Each trigger optionally has an associated threshold value
– Usually used to parametrize conditional expressions 

• But you may choose to compare to constants instead

– Need not be scalar, only the expression interprets it

– Not usually applicable to box or range conditions

• Such thresholds would be vectors of ranges if used

• If your conditional expressions reference a threshold:

– You must set it before the trigger is used

• Cold.threshold = 4.3   #it's that easy!

– The default threshold value is nil

• CTD.fluor > nil  #will generate an exception!
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Composite Trigger Conditions 
• Two types

– Trigger “all” means when all subordinate conditions are true

• Trigger all: [Cold, DCM, HighNitrate] 

• Equivalent to:  Cold[] and DCM[] and HighNitrate[]

• Trigger all: []

– is always true
– Trigger “any” means when any subordinate condition is true

• Trigger any: [Cold, DCM, HighNitrate]

• Equivalent to:  Cold[] or DCM[] or HighNitrate[]

• Trigger any: []

– is always false
• All subordinate conditions run in the same thread as the parent
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Trigger Box Conditions

• True if each listed measurement is within the same 
associated box of interest
– Represented as the same Ruby hash mapping used for 

Trigger Ranges

– Trigger  box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity => [ 33..33.4, 35..35.5]}

– Read the boxes off the columns of the resulting matrix.

– If temperature is in one column and salinity is in the 
other, the trigger condition is false

• Columns geometrically define a set of boxes in the space of 
sensor measurements 
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Trigger Box Corner Cases
• If measurements do not specify the same number of ranges:

– Those that are missing ranges will be ignored

Trigger  box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity  => [ 33..33.4 ]}

● If the temperature is between 5..7.21, the trigger condition is 
true, regardless of salinity

• If a measurement specifies a single range (not an Array)

– That range will be applied to all others

– As though it had been repeated in an Array

Trigger  box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity  => 33..33.4}

● The salinity must always be in 33..33.4, regardless of 
temperature
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Trigger.now!

• Not really a trigger condition, rather an action!
– Causes the current mission phase to start immediately

– Raises an exception if mission is not waiting

• Exception is raised in caller's thread

• The mission's processing is unaffected

• There need not be any trigger conditions associated with 
the waiting phase for Trigger.now! to work.

– The phase may be just awaiting its start time
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Trigger.replace or Trigger.restart
• Replace current phase's start time and/or trigger conditions

– Affects only for the phase currently waiting to start

– Raises an exception if mission is not waiting

• All arguments are optional

• First argument is the replacement phase start time

– Specify nil to leave start time unchanged

• Other arguments are replacement trigger conditions

– Omit other args to leave existing triggers in place

• Trigger.replace “+1.5 days”, Cold, Deep

– Mission will continue waiting up to 36 more hours for the 
Cold or Deep condition to be satisfied
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Trigger Holdoffs

• Trigger holdoffs are a simple way to avoid false triggers
– A form of glitch filtering

– ESP logs show countdown when awaiting holdoffs

• All triggers have an associated holdoff in samples
– condition must be true for at least holdoff+1 samples

– nil is the default holdoff value

• holdoff=nil, equivalent of holdoff=0

– But holdoff nil is not displayed, whereas 0 is
– holdoff of false disables that particular trigger condition

– holdoff of true forces trigger on its next evaluation
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Trigger enable and disable 
● Enable trigger monitoring with:

● Trigger.enable 

● Disable trigger monitoring with:
● Trigger.disable

● Trigger monitoring is initially disabled
● Use Trigger.enable as soon as contextual data starts 

making sense and all relevant thresholds are defined

● Triggers may be enabled/disabled at any time
● Even while awaiting them

● Triggers are initially enabled during simulation!
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Automatic Trigger Rearm
• Trigger monitoring may be disabled whenever a trigger condition 

causes a phase to start
– If triggers remain enabled, rearm is said to be true

– If triggers disable once one has fired, rearm is said to be false

• Set the rearm flag with:

– Trigger.rearm = true

• Clear the rearm flag with:

– Trigger.rearm = false

• Real missions start with rearm=false

– You may change the Trigger.rearm flag at any time

– You may want to combine it with Trigger.enable or Trigger.disable

• Simulation missions start with Trigger.rearm=true
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