
Copyright MBARI 2014

Environmental Sample Processor
Mission Scripting

5/22/14 Brent Roman brent@mbari.org

Copyright MBARI 2014

2

Mission Scripts and Phases

• Top Level Commands for a deployment
– Often omitted for lab work

• Usually contains a mission method

– Specifies the starting tube number

– Optionally specifies Mission End Time

– Contains any number of mission phases

• Each having a start time
– with optional trigger conditons

• One or more protocols run per phase
– The ESP sleeps between phases

• Contextual sensors continue being polled

Copyright MBARI 2014

3

Protocols

• Protocol scripts do the real work of microbiological assays
– Many canned scripts available:

• HAB = Harmful Agal Bloom
• BAC = Bacterial Assay
• LARV = Larval Assay
• WCR = Whole Cell Archival
• DA = Domoic Acid Assay
• HABDA = combined HAB and DA assay
• STX = Saxitoxin Assay

– All have parameters you may modify to suit your needs

• With default values so you needn't specify everything
– You may also create new protocols using the existing protocols as a

guide:

• STX was created just last year as a variant of DA

Copyright MBARI 2014

4

Example “3peat” QC Mission

mission startTube: 2, until: “6AM 12/18/12” do

 at "12:40:00 12/14/12" do
 habda {noKill}
 end

 at "12:40:00 12/15/12" do
 habda {noKill}
 end

 at "04:00:00 12/17/12" do
 habda
 end

end

•

Copyright MBARI 2014

5

It's Ruby all the way down

• Commands, Missions, Scripts, Protocols, Configuration Files
– All are written in version 1.8 of the Ruby scripting language

• Learn a little Ruby

 * Rote memorization fails when something goes wwrong

– Standard on Mac OS, easily installed everywhere else.

• A gentle tutorial:
● https://pine.fm/LearnToProgram/

● The bible:
● http://pragprog.com/book/ruby/programming-ruby

● More (free) choices to suit your learning style:
● http://ruby.about.com/od/tutorialsontheweb/tp/10waysfree.htm

https://pine.fm/LearnToProgram/

Copyright MBARI 2014

6

Environmental Sample Processor
Contextual Sensors

5/22/14 Brent Roman brent@mbari.org

Copyright MBARI 2014

7

Supported Instruments
• Can => internal environmental sensors within ESP core's housing

• Temperature, humidity, pressure, battery voltage, amperage
• Updates every 10 minutes as long as ESP application runs

• CTD => Seabird SBE 16plus V2 interfaced via RS-232 sensor 1
• Temperature, pressure, conductivity, plus optional...
• Fluorometer, Transmissometer, Oxygen Sensor (1 of 2 types)

• ISUS => one of two types interfaced via RS-232 sensor 2
• Concentration of nitrate and, optionally, bisulfide
• Support for all manufactured at MBARI

• Some later models from Satlantic (in use at WHOI)

• TBD = Something new can yet be interfaced as RS-232 sensor 3
• Note: this port is not currently wired to lid of the can

Copyright MBARI 2014

8

Polling Contextual Sensors

• Trickier than it would first seem
• ISUS must synchronize with CTD to receive timely updates
• Sample rate optionally quickens during sampling
• Multiple threads may not access instruments simultaneously
• The Can's internal sensor polling is controlled independently

• ESP explicitly triggers every CTD sample!

• Code is in Polling object in mission/skeleton.rb
• Polling.start #starts SensorPolling with new parameters
• Polling.stop #stops polling and properly closes instrument files
• Polling.pause #stops until resumed
• Polling.resume #resumes previous polling schedule if paused

• Instrument shows last sampled state of all Instruments
• CTD, ISUS, Can show last sampled state of each Instrument

Copyright MBARI 2014

9

Internal Environmental sensors

• can is short for Sleepy.queryCan --> forces immediate sampling
• can.temperature => internal temp. at top of can in degrees C
• can.humidity => humidity in % of saturation
• can.pressure => internal pressure in psia
• can.voltage => instantaneous battery voltage
• can.current => instantaneous battery load in amps
• can.avgCurrent => averaged battery load in amps
• can.waterAlarm => percent “wet” (0..100) usually < 1
• Wattage is merely can.current * can.voltage

• Sleepy.can accesses most recent sample
• Typically updated every 10 minutes
• Recorded in binary 'real.log' file

Copyright MBARI 2014

10

Seabird CTD
• Seabird 16plus V2 CTD with

• support for fluorometer, transmissometer, oxygen sensor, ...
• Generates file CTD-*.hex of raw samples

• CTD.status # shows instrument status
• CTD.pumpmode = mode, where mode is either:

• :of, :beforeSample, or :duringSample
• s = CTD.sample => returns sample object, assigns it to variable s

• s.temperature => sea temperature in degrees C
• s.conductivity => conductivity in S/m
• s.pressure => pressure in decibars
• s.transmissometer => % optical transmission
• s.beamAttenuation => extinction coefficient in 1/m
• s.sampleTime => time at which this sample was started
• s.dataTime => time at which this sample was finished
• s.depth => depth in meters (derived from pressure)
• s.salinity => salinity in mythical PSUs

• More documentation in lib/instrument/ctd.rb

Copyright MBARI 2014

11

ISUS
• ISUS = In-Situ Ultraviolet Spectrometer

• Stores raw spectra in ISUS-*.dat (MBARI's ISUS only!)
• Logs errors in ISUS-*.err
• Requires temp., salinity & depth from the CTD !!

• ISUS.status # shows instrument status
• ISUS.species = 2 (or 3) #three to include bisufide
• ISUS.fit = 217..240 #spectral fit window in nm (tweak for species)
• ISUS.fromCTD temp, salinity, depth #update ISUS from CTD
• s=ISUS.sample => sample with most recent values fromCTD

• s.no3 => Nitrate concentration in uM/L
• s.br => Bromide in uM/L
• s.hs => Bisulfide in uM/L (only valid if species>2 and fit tweaked)
• s.sampleTime => when sample was requested
• s.dataTime => when sample was recorded

• More documentation in lib/instrument/isus.rb

Copyright MBARI 2014

12

Parameters controlling
Contextual Sensor Polling

• $global variables determine instruments' configuration/polling rates
• These may be assigned anytime before Polling.start

• But, usually they get set once in mission/phasecfg.rb
• Missions with :until=>time automatically invoke Polling.start

• CTD
• $ctdPumpMode=:duringSample #may be :beforeSample or :off
• $ctdInterval=Delay.new “5:00” #sample CTD every 5 minutes
• $ctdPeriod=Delay.new “1:00:00” #upload CTD data every hour
• $samplingCTDinterval=Delay.new “2:30” #2x faster ...
• $samplingCTDperiod=Delay.new “30:00” # while sampling

• ISUS
• $isusSpecies = 2 #ignore sulfides by default (3 to include them)
• $isusFit =217.240 #because Luke says it should be so :-)

• ISUS polling rate is CTD sampling rate + 10 minutes
• ISUS auto-sampling cannot be disabled

Copyright MBARI 2014

13

Adaptive Sampling
With Trigger Conditions

5/22/14 Brent Roman brent@mbari.org

Copyright MBARI 2014

14

Traditional ESP Missions

• A sequence of “phases”, each with a prescribed start time
– Actions predetermined by puck load

• ESP sleeps between phases. While “asleep”:
– Still monitors contextual sensors
– Still maintains radio context with shore

• All phases began at times prescribed in the mission script
– Start times specified may be absolute or relative

• Relative times specify the “sleep time” between phases

• No adaptive sampling was possible without hand coding it

Copyright MBARI 2014

15

Trigger Condition Overview

• Each start time is augmented by a list of trigger conditions
– A phase starts when any of its trigger conditions is true

– The start time can be thought of as the one required trigger condition

• It determines the latest possible starting time for the phase

• Triggers start phases before their scheduled times

– Triggers cannot delay phases beyond their “start times”
– Triggers cannot change the sequence of actions performed

» Processing sequence is determined by puck load.
• Each trigger condition is reevaluated whenever contextual sensors read

– Sensible, as trigger conditions almost always evaluate sensor data

– This is a convention
(but, not difficult to circumvent if necessary)

• Each trigger condition runs in its own Ruby thread
– Failure (e.g. exceptions raised) in any trigger will not affect the others

• You can even patch the code and restart failed trigger conditions

• Or, kill the trigger thread to ensure it does not trigger the phase

Copyright MBARI 2014

16

Basic Trigger Conditions
• Basic Trigger Conditions contain arbitrary true/false expressions

– A threshold value is associated with each

• CTD.temp < threshold

• ISUS.no3 > threshold

• CTD.depth > threshold[0] and CTD.fluor > threshold[1]

– Thresholds need not be scalar values

– Trigger expressions are reevaluated just after each time contextual
sensors are read while the mission is awaiting conditions

• May be assigned names like Cold, Hot, Fresh, Salty

• Threshold values can be modified at any time
– Via the script itself or the interactively via espclient

– All modifications to thresholds are logged

• Very flexible, but also painfully verbose for complex triggers

Copyright MBARI 2014

17

Trigger Thresholds

• Each trigger optionally has an associated threshold value
– Usually used to parametrize conditional expressions

• But you may choose to compare to constants instead

– Need not be scalar, only the expression interprets it

– Not usually applicable to box or range conditions

• Such thresholds would be vectors of ranges if used

• If your conditional expressions reference a threshold:

– You must set it before the trigger is used

• Cold.threshold = 4.3 #it's that easy!

– The default threshold value is nil

• CTD.fluor > nil #will generate an exception!

Copyright MBARI 2014

18

Composite Trigger Conditions
• Two types

– Trigger “all” means when all subordinate conditions are true

• Trigger all: [Cold, DCM, HighNitrate]

• Equivalent to: Cold[] and DCM[] and HighNitrate[]

• Trigger all: []

– is always true
– Trigger “any” means when any subordinate condition is true

• Trigger any: [Cold, DCM, HighNitrate]

• Equivalent to: Cold[] or DCM[] or HighNitrate[]

• Trigger any: []

– is always false
• All subordinate conditions run in the same thread as the parent

Copyright MBARI 2014

19

Trigger Box Conditions

• True if each listed measurement is within the same
associated box of interest
– Represented as the same Ruby hash mapping used for

Trigger Ranges

– Trigger box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity => [33..33.4, 35..35.5]}

– Read the boxes off the columns of the resulting matrix.

– If temperature is in one column and salinity is in the
other, the trigger condition is false

• Columns geometrically define a set of boxes in the space of
sensor measurements

Copyright MBARI 2014

20

Trigger Box Corner Cases
• If measurements do not specify the same number of ranges:

– Those that are missing ranges will be ignored

Trigger box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity => [33..33.4]}

● If the temperature is between 5..7.21, the trigger condition is
true, regardless of salinity

• If a measurement specifies a single range (not an Array)

– That range will be applied to all others

– As though it had been repeated in an Array

Trigger box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity => 33..33.4}

● The salinity must always be in 33..33.4, regardless of
temperature

Copyright MBARI 2014

21

Trigger.now!

• Not really a trigger condition, rather an action!
– Causes the current mission phase to start immediately

– Raises an exception if mission is not waiting

• Exception is raised in caller's thread

• The mission's processing is unaffected

• There need not be any trigger conditions associated with
the waiting phase for Trigger.now! to work.

– The phase may be just awaiting its start time

Copyright MBARI 2014

22

Trigger.replace or Trigger.restart
• Replace current phase's start time and/or trigger conditions

– Affects only for the phase currently waiting to start

– Raises an exception if mission is not waiting

• All arguments are optional

• First argument is the replacement phase start time

– Specify nil to leave start time unchanged

• Other arguments are replacement trigger conditions

– Omit other args to leave existing triggers in place

• Trigger.replace “+1.5 days”, Cold, Deep

– Mission will continue waiting up to 36 more hours for the
Cold or Deep condition to be satisfied

Copyright MBARI 2014

23

Trigger Holdoffs

• Trigger holdoffs are a simple way to avoid false triggers
– A form of glitch filtering

– ESP logs show countdown when awaiting holdoffs

• All triggers have an associated holdoff in samples
– condition must be true for at least holdoff+1 samples

– nil is the default holdoff value

• holdoff=nil, equivalent of holdoff=0

– But holdoff nil is not displayed, whereas 0 is
– holdoff of false disables that particular trigger condition

– holdoff of true forces trigger on its next evaluation

Copyright MBARI 2014

24

Trigger enable and disable
● Enable trigger monitoring with:

● Trigger.enable

● Disable trigger monitoring with:
● Trigger.disable

● Trigger monitoring is initially disabled
● Use Trigger.enable as soon as contextual data starts

making sense and all relevant thresholds are defined

● Triggers may be enabled/disabled at any time
● Even while awaiting them

● Triggers are initially enabled during simulation!

Copyright MBARI 2014

25

Automatic Trigger Rearm
• Trigger monitoring may be disabled whenever a trigger condition

causes a phase to start
– If triggers remain enabled, rearm is said to be true

– If triggers disable once one has fired, rearm is said to be false

• Set the rearm flag with:

– Trigger.rearm = true

• Clear the rearm flag with:

– Trigger.rearm = false

• Real missions start with rearm=false

– You may change the Trigger.rearm flag at any time

– You may want to combine it with Trigger.enable or Trigger.disable

• Simulation missions start with Trigger.rearm=true

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

