

Copyright MBARI 2016

1

Puck Tracking

4/27/16 Brent Roman brent@mbari.org

Copyright MBARI 2016

2

Without Puck Tracking

• Previously, ESP did not remember puck positions
– Whenever app started

• assumed Clamps empty and FlushPuck garaged

• ESP has always tracked the number of pucks in each tube

– In text file: /var/log/esp/real.puck

• Simple, reliable behavior
– Operator must return ESP to this “safe” state

• Via obscure, low-level commands

• Nerve wracking when the can is closed

– Especially likely when mission includes system reboots
• As “long missions” do

Copyright MBARI 2016

3

ESP Puck Tracking

• Enhances the .puck file to record “unsafely” positioned pucks
– On app exit

• Logs warnings of any misplaced pucks

– Will not work if ESP is powered off while app is running!

• Pucks automatically return to their recorded positions
– Immediately on app reentry if ESP.ready?
– Or, immediatley after running ESP.ready!

• Will automatically garage a FlushPuck left in the Hand

– So that the Hand can hold pucks that were left in Clamps

• Works in simulation modes, too!

Copyright MBARI 2016

4

Puck Tracking
Assumtions

• Puck Tracking logic will be “confused” if:
– Pucks moved by hand

• Or using “low-level” Arm. commands

– ESP app is not allowed to exit normally

• Exit the ESP app before cutting power!

– The .puck file is removed or modified

• /var/log/esp/${ESPmode}.puck

• Use the pucks, clear!, or forgetESPstate commands

– To correct puck tracking state

Copyright MBARI 2016

5

Puck Tracking
File

• Example /var/log/esp/${ESPmode}.puck:

@START,21:33:33PDT27-Apr-16

1:0,2:22,3:22,4:22,5:22,6:22,7:22 #fill!

@EXIT,21:33:33PDT27-Apr-16

@START,21:33:33PDT27-Apr-16

2:21 #Puck.move 2,1

1:1

!CC.holds FlushPuck #exitted with FlushPuck in CC

*EXIT,21:34:40PDT27-Apr-16

Copyright MBARI 2016

6

Puck Tracking
Commands

• clear! tube(s)
– Forget number of pucks in each specified

• or all tubes, if argument omitted

– Example: clear! 2..4,7 #forget pucks in tubes 2..4 and 7

• access tube
– Rotate carousel to access specified tube and clear! it

– Always use when manually loading or unloading pucks

• safe?

– Confirm pucks are stowed in their “safe” positions

• reset!

– Forget all puck counts, tracking and long mission state

– Optional arguments are passed into fill!

Copyright MBARI 2015

7

Declaring Puck Stack Heights
• Puck stack height cannot be measured in simulation

– Puck load must be prescribed in simulations

• Every new mission should define the number of pucks
expected to be loaded in each tube!

– Optional in “real” mode, but...

– Isn't it better to “fail early” if puck load is wrong?

• Excerpt of mission with 6 pucks in tubes 2, 3 and 4:

pucks 2=>6, 3=>6, 4=>6 # see next slides

mission startTube: 2, until: “9AM 4/10/15” do

<mission phases>

end

• Fails immediately if tube 2 did not start with exactly six pucks

Copyright MBARI 2015 8

Declaring Puck Stack Heights

• New commands to set and query the expected stack
height:

– clear! tubeList=1..7

• Clears each specified tube's stack height

– fill! numPucks=22, tubeList=2..6

• Puts the specified number of pucks in each listed
tube

– pucks tubeHash={}

• Puts the specified number of pucks in specified tubes

• If tubeHash omitted, just displays the # of pucks in
each tube

Copyright MBARI 2015 9

Detailed Stack Height Setting
• fill!

– Fills all tubes except #1 (for typical fully loaded carousel mission)

• fill!; clear! 2, 4..7

– Ends up with tube 3 containing 22 pucks, others empty

• fill! 9

– Fills all tubes except #1 with 9 pucks

• fill! 9, 1, 3..5, 7

– Fills tube 1, 3, 4, 5 and 7 with 9 pucks

• pucks 2=>22, 6=>18

– Fills tube #2 with 22 pucks, tube #6 with only 18

• pucks

– Changes nothing

– Just returns the hash of pucks in tubes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

