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Generic
Control Block Diagram 
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Classic

Proportional, Integral, Derivative (PID)
Control Block Diagram 

3 simple, independent, parallel linear control laws
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Proportional, Derivative
Mechanical Schematic Diagram 

P is the spring constant, D is the degree of damping stiffness

Setpoint

Mass

Spring

Damper

Taut spring → Large control forces & fast response/ringing
Loose spring → Small control forces & slow response/ringing
Damper reduces ringing

Actual Position
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Step Response
Trace of Mass motion after setpoint suddenly changed 
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Tuning P and D gains
 for a desired step response

• Analogous to “tuning” a car/truck/motorcycle suspension
• Higher Proportional Gain (P) stiffens spring

– Faster response with higher frequency ringing
– More peak power required

• Higher Derivative Gain (D) increases active damping
– Can be very effective at reducing ringing
– Even more peak power required!
– Sudden changes in setpoint cause faster corrections

• All noise is amplified as well
– from sensors, mechanism or actuator
– System “unstable” when noise fed-back with gain >1
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Discretization Errors

• Discretization occurs everywhere in digital controllers
– Input, Output, and even Time itself

• Must sample at rate least twice ringing frequency
– 5x is usually better in practice
– But one can sample too fast!
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Trajectory Generator Basics

• Moves setpoint (gradually) from one goal to the next

• Why bother?
– Because we don't have infinite power (yet!)
– Allows tight control of velocity profile

Position

Velocity

Plateau Velocity
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Trajectory Generator 
Complications

• Discretization and differing acceleration / deceleration 
require special care

Position

Velocity
Sample d, d+1Sample a, a+1
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Why not use the I-term to
Eliminate Steady-state Error?

• Every PD controller must see a non-zero error to generate a 
corrective force.

• Turning the PD gains up to minimize this may not be practical.

• Feed back the err integral to gradually drive steady-state error to 
zero!
– That's what the I-term of the PID does, right?
– Yes.  At the cost of reduced bandwidth, increased overshoot, 

hunting, etc.
– Increasing the I gain enough to make it useful will often add 

noticeable ringing to the servo's step response (or even 
destabilize it)

– Consider what happens after pushing against a stop for an 
extended period, once that stop is removed, or whenever the 
output saturates.
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ESP's Modified PID
Control Block Diagram 

Integrator output redirected offset goal input to trajectory generator

+

Goal Position

Integrated Error

Trajectory
Generator
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Letting the Trajectory Generator 
Eliminate Steady-State Error

• Who says the trajectory must stop at the stated goal?

• Keep moving setpoint until the actual goal is reached
– As long as it doesn't deviate from it too much

• Does not cause ringing or destabilize the PD servo loop
– Unless you go crazy with the I-gain

• Error is expressed in terms of a position offset rather than a 
hidden state variable.

• Add a deadband to prevent hunting
– This helps the transitional integrator approach too
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Stiction

• PID can be optimal only for linear systems
– No real system is completely linear!

•  Small actuators usually have significant initial stickiness

• Causes jerkiness at the start and end of seeks
– Effectively limits minimum smooth running speed 

• High D gain and sample rates may help mitigate

• Applying an inverse nonlinear compensation that adds a 
constant force whenever command velocity is non-zero 
may quickly “break stiction” if its degree is repeatable

• There are many more techniques...no magic bullet.
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Back EMF

• Motors are generators are motors, yada, yada...

• Control laws are formulated in terms of a force
– PWM or voltage is not directly related to output force
– Motor Current is!

• High end servos regulate current at high bandwidth
• This is the “right” way to cope with back-EMF
• But, it takes a DSP or dedicated analog control loop

– ESP compensates somewhat with a fed-forward gain on 
observed velocity called “friction” compensation.

– We could do this better.
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Adding an outer Pressure Servo

• Pressure is a proxy for any analog input to be regulated 
while moving from one goal position to another

• Never move backward, even if pressure is increasing
– Is this constraint application specific to the ESP?

• Stops if pressure exceeds configured “safe” limit

• Simple Proportional controller  (only a P-gain)
– Acceleration on trajectory is set proportional to 

pressure error, subject to trajectory's constraints
– No attempt to drive pressure error to exactly zero
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ESP Dwarf DC Motor Servos
• Two identical servo channels

• 64hz sampling timebase (sample rate typically 32hz)

• Each Channel's Inputs:
– Quadrature incremental encoder 

• (A and B 90 degrees out of phase)
– Home flag (typically a hall effect sensor)
– Optional threshold sensor
– Forward and Reverse limit switches
– One General Purpose digital input bit (for gripper)

• Each Channel Outputs:
– PWM  -100% to 100% (15 kHz with 1% resolution)
– One General Purpose digital output bit
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Units:  No Floating Point

•MSP430 would not be able to compute floats fast enough

•Avoids whole issue of round off errors

•P and D gains expressed as 16-bit integers/4096

•Positions are 32-bit encoder counts relative to “home” flag

•Time expressed in “tics”
– Each tic corresponds to one controller sample update

– Typically 32hz or 64hz (but could be any submultiple)

•Velocity expressed in 16-bit encoder counts per tic
– Ensure nothing ever moves faster than 32000/counts/tic!!

•Acceleration expressed as counts/tic/tic

•Electrical Current expressed in milliamps

•Pressure expressed in ADC counts (application must convert)
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Basic Configuration

•:samplePeriod = number of 64hz timebase tics per sample tic
– Default value = 2 (Typically 1 or 2)

•:encoder, :threshold, :home sensor power / polarity
– Default value = :off (may be :positive or :negative)

•:homeDirection = :forward or :reverse
– Default value = :reverse
– :reverse moves negative if home flag inactive

•:brake = short motor terminals on servo error (:false or :true)
– Default value = true

•:debug = output servo state at sample rate while seeking goal
– Default value = false
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Control Gains and Factors

• PID :gain struct with members P, I, and D

– Default values for each are 0

– Servo will not operate until at least one is non-zero

– Effective value of P and D is divided by 4096

– I is effectively divided by 16384

• :friction compensation gain
– cmdVel * friction / 4096 added to PWM output

– cmdVel = Commanded velocity

• :stiction compensation factor
– If negative cmdVel, subtract stiction/2 from PWM
– If positive cmdVel, add stiction/2 to PWM
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Trajectory Generator (1 of 2)
• :acceleration & :deceleration in counts/tic/tic

– Default values for each are 0, normally positive

– Specify negative acceleration to disable “softstart”

– Zero :deceleration implies deceleration=abs(acceleration)

• :maxSpeed = plateau velocity in counts/tic 

– Temporarily reduced when PWM limits reached to 
prevent trajectory errors due to low battery voltage

• :minSpeed = slowest acceptable progress rate (counts/sec) 

– Speed error if maxSpeed reduced below minSpeed

• :maxSettling = max tics to allow to servo to settle at goal
– Default 0, typically 2 – 3 seconds worth of tics
– Just ensures that position error not returned too early
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Trajectory Generator (2 of 2)
• :stopWindow detemines how nearly goal should be reached

– Specified in encoder counts (16 bit limit max)

– Temporarily increased each time goal is passed

– Special Value false indicates no (more) reseeks allowed

– Defaults to Special Value :deceleration = deceleration rate

– Also accepts value :acceleration

•  :hunt determines whether to adjust setpoint after goal reached

– Defaults to false, set true to “fight” to hold exact position at goal

– Setpoint is never adjusted if position within stopWindow

• :thresholdOffset determines how far from threshold to stop when reached

– Defaults to 0 encoder counts

– When threshold reached before goal, goal = position + thresholdOffset

– Used to position top of puck stack with respect to ESP's top plate
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Core Limits

• :maxPWM & :minPWM

– Max must be >= min, but each may be negative or positive

– Constrains servo output, but does not constrain “force” command

– Effective maxSpeed is reduced when servo reaches these PWM limits

•  :maxPositionErr determines absolute maximum tolerable servo error in 
different contexts:

–  SeekErr if stopWindow grows too large due to repeatedly missing goal

– TrajectoryErr if position becomes too far from setpoint while transiting

– PositionErr if position moves too far from goal after arrival

• :maxCurrent determines maximum allowable motor current
– In milliamps
– Should never be set > 2000mA
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Pressure Limits

• :maxInPress, :maxOutPress, :minInPress, :minOutPress
– 0 to 4095 ADC counts 

– Maximum/Minimum tolerated Intake and Outlet pressures

– Constraint disabled if corresponding max == min

– All default to 0

• :maxDeltaPress & :minDeltaPress -- (-4095 to 4095)ADC counts 

– Maximum/Minimum tolerated pressure difference

– Constraint disabled if set to special value:  false

– All default to false  (there is no corresponding value true)

•  Generic “Pressure Error” results if any of the above are violated
– One must check status to determine the exact problem
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Pressure Servo Configuration
• :inputDeltaPress determines if pressure delta is sensed or 

derived

– True to input the difference from ADC 7

– False to derive it as (intake – outlet) pressure

– Defaults to false

• :pressBias is subtracted from delta pressure before use

– In servo or limit check

– Defaults to 0

•  :pressGain is the proportional gain of the pressure servo

– Scaled like P and D, pressGain is *4096

–  Reduces acceleration from that normally determined by 
the trajectory generator.

– Never causes command velocity to fall below minSpeed
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Servo Status

• :enabled = true if servo control is active

• :pastRLS, :pastFLS, :pastThreshold, :home
– True if corresponding switch is closed

• :position = 32-bit signed offset from home position

• :velocity = 16-bit signed in encoder counts/tics

• :current = signed milliamps
– Always agrees with sign of PWM status below

• :PWM = signed percent PWM duty cycle

• :err = 16-bit signed (setpoint – position)

• :voltage = raw motor voltage (in volts)
– This is the only floating point value
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Servo Pressure Status

• Recall that pressure may be a proxy for any arbitrary 
volage input

• :inPress = intake pressure in raw ADC counts (0-4095)

• :outPress = outlet pressure in ADC counts

• :deltaPress = delta pressure in ADC counts
– This is always ADC channel 7
– It is not affected by the :inputDeltaPress 

configuration flag
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