

Copyright MBARI 2010

ESP Servo Motor Control
Overview

3/10/10 Brent Roman brent@mbari.org

Copyright MBARI 2010

Generic
Control Block Diagram

Copyright MBARI 2010

Classic

Proportional, Integral, Derivative (PID)
Control Block Diagram

3 simple, independent, parallel linear control laws

Copyright MBARI 2010

Proportional, Derivative
Mechanical Schematic Diagram

P is the spring constant, D is the degree of damping stiffness

Setpoint

Mass

Spring

Damper

Taut spring → Large control forces & fast response/ringing
Loose spring → Small control forces & slow response/ringing
Damper reduces ringing

Actual Position

Copyright MBARI 2010

Step Response
Trace of Mass motion after setpoint suddenly changed

Copyright MBARI 2010

Tuning P and D gains
 for a desired step response

• Analogous to “tuning” a car/truck/motorcycle suspension
• Higher Proportional Gain (P) stiffens spring

– Faster response with higher frequency ringing
– More peak power required

• Higher Derivative Gain (D) increases active damping
– Can be very effective at reducing ringing
– Even more peak power required!
– Sudden changes in setpoint cause faster corrections

• All noise is amplified as well
– from sensors, mechanism or actuator
– System “unstable” when noise fed-back with gain >1

Copyright MBARI 2010

Discretization Errors

• Discretization occurs everywhere in digital controllers
– Input, Output, and even Time itself

• Must sample at rate least twice ringing frequency
– 5x is usually better in practice
– But one can sample too fast!

Copyright MBARI 2010

Trajectory Generator Basics

• Moves setpoint (gradually) from one goal to the next

• Why bother?
– Because we don't have infinite power (yet!)
– Allows tight control of velocity profile

Position

Velocity

Plateau Velocity

Copyright MBARI 2010

Trajectory Generator
Complications

• Discretization and differing acceleration / deceleration
require special care

Position

Velocity
Sample d, d+1Sample a, a+1

Copyright MBARI 2010

Why not use the I-term to
Eliminate Steady-state Error?

• Every PD controller must see a non-zero error to generate a
corrective force.

• Turning the PD gains up to minimize this may not be practical.

• Feed back the err integral to gradually drive steady-state error to
zero!
– That's what the I-term of the PID does, right?
– Yes. At the cost of reduced bandwidth, increased overshoot,

hunting, etc.
– Increasing the I gain enough to make it useful will often add

noticeable ringing to the servo's step response (or even
destabilize it)

– Consider what happens after pushing against a stop for an
extended period, once that stop is removed, or whenever the
output saturates.

Copyright MBARI 2010

ESP's Modified PID
Control Block Diagram

Integrator output redirected offset goal input to trajectory generator

+

Goal Position

Integrated Error

Trajectory
Generator

Copyright MBARI 2010

Letting the Trajectory Generator
Eliminate Steady-State Error

• Who says the trajectory must stop at the stated goal?

• Keep moving setpoint until the actual goal is reached
– As long as it doesn't deviate from it too much

• Does not cause ringing or destabilize the PD servo loop
– Unless you go crazy with the I-gain

• Error is expressed in terms of a position offset rather than a
hidden state variable.

• Add a deadband to prevent hunting
– This helps the transitional integrator approach too

Copyright MBARI 2010

Stiction

• PID can be optimal only for linear systems
– No real system is completely linear!

• Small actuators usually have significant initial stickiness

• Causes jerkiness at the start and end of seeks
– Effectively limits minimum smooth running speed

• High D gain and sample rates may help mitigate

• Applying an inverse nonlinear compensation that adds a
constant force whenever command velocity is non-zero
may quickly “break stiction” if its degree is repeatable

• There are many more techniques...no magic bullet.

Copyright MBARI 2010

Back EMF

• Motors are generators are motors, yada, yada...

• Control laws are formulated in terms of a force
– PWM or voltage is not directly related to output force
– Motor Current is!

• High end servos regulate current at high bandwidth
• This is the “right” way to cope with back-EMF
• But, it takes a DSP or dedicated analog control loop

– ESP compensates somewhat with a fed-forward gain on
observed velocity called “friction” compensation.

– We could do this better.

Copyright MBARI 2010

Adding an outer Pressure Servo

• Pressure is a proxy for any analog input to be regulated
while moving from one goal position to another

• Never move backward, even if pressure is increasing
– Is this constraint application specific to the ESP?

• Stops if pressure exceeds configured “safe” limit

• Simple Proportional controller (only a P-gain)
– Acceleration on trajectory is set proportional to

pressure error, subject to trajectory's constraints
– No attempt to drive pressure error to exactly zero

Copyright MBARI 2010

ESP Dwarf DC Motor Servos
• Two identical servo channels

• 64hz sampling timebase (sample rate typically 32hz)

• Each Channel's Inputs:
– Quadrature incremental encoder

• (A and B 90 degrees out of phase)
– Home flag (typically a hall effect sensor)
– Optional threshold sensor
– Forward and Reverse limit switches
– One General Purpose digital input bit (for gripper)

• Each Channel Outputs:
– PWM -100% to 100% (15 kHz with 1% resolution)
– One General Purpose digital output bit

Copyright MBARI 2010

Units: No Floating Point

•MSP430 would not be able to compute floats fast enough

•Avoids whole issue of round off errors

•P and D gains expressed as 16-bit integers/4096

•Positions are 32-bit encoder counts relative to “home” flag

•Time expressed in “tics”
– Each tic corresponds to one controller sample update

– Typically 32hz or 64hz (but could be any submultiple)

•Velocity expressed in 16-bit encoder counts per tic
– Ensure nothing ever moves faster than 32000/counts/tic!!

•Acceleration expressed as counts/tic/tic

•Electrical Current expressed in milliamps

•Pressure expressed in ADC counts (application must convert)

Copyright MBARI 2010

Basic Configuration

•:samplePeriod = number of 64hz timebase tics per sample tic
– Default value = 2 (Typically 1 or 2)

•:encoder, :threshold, :home sensor power / polarity
– Default value = :off (may be :positive or :negative)

•:homeDirection = :forward or :reverse
– Default value = :reverse
– :reverse moves negative if home flag inactive

•:brake = short motor terminals on servo error (:false or :true)
– Default value = true

•:debug = output servo state at sample rate while seeking goal
– Default value = false

Copyright MBARI 2010

Control Gains and Factors

• PID :gain struct with members P, I, and D

– Default values for each are 0

– Servo will not operate until at least one is non-zero

– Effective value of P and D is divided by 4096

– I is effectively divided by 16384

• :friction compensation gain
– cmdVel * friction / 4096 added to PWM output

– cmdVel = Commanded velocity

• :stiction compensation factor
– If negative cmdVel, subtract stiction/2 from PWM
– If positive cmdVel, add stiction/2 to PWM

Copyright MBARI 2010

Trajectory Generator (1 of 2)
• :acceleration & :deceleration in counts/tic/tic

– Default values for each are 0, normally positive

– Specify negative acceleration to disable “softstart”

– Zero :deceleration implies deceleration=abs(acceleration)

• :maxSpeed = plateau velocity in counts/tic

– Temporarily reduced when PWM limits reached to
prevent trajectory errors due to low battery voltage

• :minSpeed = slowest acceptable progress rate (counts/sec)

– Speed error if maxSpeed reduced below minSpeed

• :maxSettling = max tics to allow to servo to settle at goal
– Default 0, typically 2 – 3 seconds worth of tics
– Just ensures that position error not returned too early

Copyright MBARI 2010

Trajectory Generator (2 of 2)
• :stopWindow detemines how nearly goal should be reached

– Specified in encoder counts (16 bit limit max)

– Temporarily increased each time goal is passed

– Special Value false indicates no (more) reseeks allowed

– Defaults to Special Value :deceleration = deceleration rate

– Also accepts value :acceleration

• :hunt determines whether to adjust setpoint after goal reached

– Defaults to false, set true to “fight” to hold exact position at goal

– Setpoint is never adjusted if position within stopWindow

• :thresholdOffset determines how far from threshold to stop when reached

– Defaults to 0 encoder counts

– When threshold reached before goal, goal = position + thresholdOffset

– Used to position top of puck stack with respect to ESP's top plate

Copyright MBARI 2010

Core Limits

• :maxPWM & :minPWM

– Max must be >= min, but each may be negative or positive

– Constrains servo output, but does not constrain “force” command

– Effective maxSpeed is reduced when servo reaches these PWM limits

• :maxPositionErr determines absolute maximum tolerable servo error in
different contexts:

– SeekErr if stopWindow grows too large due to repeatedly missing goal

– TrajectoryErr if position becomes too far from setpoint while transiting

– PositionErr if position moves too far from goal after arrival

• :maxCurrent determines maximum allowable motor current
– In milliamps
– Should never be set > 2000mA

Copyright MBARI 2010

Pressure Limits

• :maxInPress, :maxOutPress, :minInPress, :minOutPress
– 0 to 4095 ADC counts

– Maximum/Minimum tolerated Intake and Outlet pressures

– Constraint disabled if corresponding max == min

– All default to 0

• :maxDeltaPress & :minDeltaPress -- (-4095 to 4095)ADC counts

– Maximum/Minimum tolerated pressure difference

– Constraint disabled if set to special value: false

– All default to false (there is no corresponding value true)

• Generic “Pressure Error” results if any of the above are violated
– One must check status to determine the exact problem

Copyright MBARI 2010

Pressure Servo Configuration
• :inputDeltaPress determines if pressure delta is sensed or

derived

– True to input the difference from ADC 7

– False to derive it as (intake – outlet) pressure

– Defaults to false

• :pressBias is subtracted from delta pressure before use

– In servo or limit check

– Defaults to 0

• :pressGain is the proportional gain of the pressure servo

– Scaled like P and D, pressGain is *4096

– Reduces acceleration from that normally determined by
the trajectory generator.

– Never causes command velocity to fall below minSpeed

Copyright MBARI 2010

Servo Status

• :enabled = true if servo control is active

• :pastRLS, :pastFLS, :pastThreshold, :home
– True if corresponding switch is closed

• :position = 32-bit signed offset from home position

• :velocity = 16-bit signed in encoder counts/tics

• :current = signed milliamps
– Always agrees with sign of PWM status below

• :PWM = signed percent PWM duty cycle

• :err = 16-bit signed (setpoint – position)

• :voltage = raw motor voltage (in volts)
– This is the only floating point value

Copyright MBARI 2010

Servo Pressure Status

• Recall that pressure may be a proxy for any arbitrary
volage input

• :inPress = intake pressure in raw ADC counts (0-4095)

• :outPress = outlet pressure in ADC counts

• :deltaPress = delta pressure in ADC counts
– This is always ADC channel 7
– It is not affected by the :inputDeltaPress

configuration flag

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

