

Copyright MBARI 2015

1

Operating Modes:
Real vs. Simulated

4/21/15 Brent Roman brent@mbari.org

Copyright MBARI 2015

2

Mission Simulation
• Simulate missions before deployment to catch

– Syntax errors

– Missing, wrong, or extra parameters

– Configuration errors

• Trying to pull a reagent that is not configured/defined

– Scheduling errors

• Not leaving enough time between mission phases

• Scheduling recovery before last phase completes

• Simulate adaptive sampling triggers

– With recorded or generated CTD data

– Observe when sampling occurs

• Adjust trigger conditions as needed

• Run simulations on ESP itself, or on a Linux desktop/laptop

Copyright MBARI 2015

3

ESP Operating Modes

• ESPmode=real
– Normal operation in real-time with real hardware

– Default mode

• ESPmode=simreal

– Real-time with simulated hardware

• ESPmode=simfast

– Simulated time (with simulated hardware)

– ~1000 faster than ESPmode=real

• But may be only 50 times faster on the ESP itself

• ESPmode=quick

– Like simfast mode

– Produces less output

– Recommended for validating mission scripts

Copyright MBARI 2015

4

More Operating Modes

• ESPmode=debug
– Like real mode, but displays all I2C messages on

the console

• ESPmode=quiet

– Like real, but displays only errors on the console

• All modes are defined as ruby files in the mode
subdirectory

– One may easily create their own custom modes.

– Mode definition files are named:

• $ESPHOME/mode/mode_name.rb

Copyright MBARI 2015

5

Simulation Procedure
• ESPmode must be set before starting the ESP software

• Change the mode for all subsequent runs with:
ESPmode=newMode

• Restore normal mode for all subsequent runs
with:

ESPmode=real

• Change mode w/o affecting subsequent runs
with:

ESPmode=newMode esp mission

• Omit mission to simulate interactively

• Most typical simulation command:

ESPmode=quick esp myNewMission

Copyright MBARI 2015

6

Simulation Features and Limits
• Protocols are simulated in full detail

– Every movement of the physical hardware is simulated

– Every I2C message is simulated down to the byte level

– Puck handling assumes that there are no stack height errors

– Will not detect mechanical interference between axes

• E.g. attempts to move the carousel with the Elevator up will succeed in sim

• But, attempts to move the Elevator past its physical limits will fail in sim

– One should test new protocols by simulating them first, before wasting reagents.

• Does simulate CTD

– But not ISUS

• Tracks consumption of Time, but not:
– Reagents

• This is next on my TODO list

– Power

• Simulation of whole missions is CPU intensive

– Allow 90 minutes to simulate a full mission on the slow ESP processor

– The same sim would take < 30 seconds on a fast server.

– Figure on it taking 90 seconds for the typical laptop

Copyright MBARI 2015

7

Declaring Puck Stack Heights
• Puck stack height cannot be measured in simulation

– Puck load must be prescribed in simulations

• Every new mission should define the number of pucks
expected to be loaded in each tube!

– Optional in “real” mode, but...

– Isn't it better to “fail early” if puck load is wrong?

• Excerpt of mission with 6 pucks in tubes 2, 3 and 4:

pucks 2=>6, 3=>6, 4=>6 # see next slides

mission startTube: 2, until: “9AM 4/10/15” do

<mission phases>

end

• Fails immediately if tube 2 did not start with exactly six pucks

Copyright MBARI 2015

8

Declaring Puck Stack Heights

• New commands to set and query the expected stack
height:

– clear! tubeList=1..7

• Clears each specified tube's stack height

– fill! numPucks=22, tubeList=2..6

• Puts the specified number of pucks in each listed
tube

– pucks tubeHash={}

• Puts the specified number of pucks in specified tubes

• If tubeHash omitted, just displays the # of pucks in
each tube

Copyright MBARI 2015

9

Detailed Stack Height Setting
• fill!

– Fills all tubes except #1 (for typical fully loaded carousel mission)

• fill!; clear! 2, 4..7

– Ends up with tube 3 containing 22 pucks, others empty

• fill! 9

– Fills all tubes except #1 with 9 pucks

• fill! 9, 1, 3..5, 7

– Fills tube 1, 3, 4, 5 and 7 with 9 pucks

• pucks 2=>22, 6=>18

– Fills tube #2 with 22 pucks, tube #6 with only 18

• pucks

– Changes nothing

– Just returns the hash of pucks in tubes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

