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Linear Actuator Servo overview
• Dwarves:

• Do all the real-time work closing servo loops
• Send I2C progress and error messages back to requester
• Optionally output debug information to their extra RS232 port
• Optionally interpret debug commands from same RS232 port

• Ruby:
• Converts its objects to and from I2C byte strings
• Optimizes switches between alternative servo configurations
• Converts to and from raw encoder counts and scales or names
• Reinterprets dwarf error messages as Ruby Exception objects
• Retries Error Exceptions when appropriate
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Linear Actuator Positions
• LinearAxis::Position Ruby Class
• Maps to and from raw encoder counts
• A symbolic label plus an optional offset in raw encoder counts

• slide[:position, offset]
• Forearm[:garage, -300]   #Forearm at garage - 300 counts
• May also be written:  Forearm[:garage]-300

• May usually be replaced by just the label when offset is zero
• As in:  Forearm.to :garage
• Same as:  Forearm.to  Forearm[:garage]+0

• Positions are Ruby objects
• myForearmGarage = Forearm[:garage, -300]
• Forearm.to  myForearmGarage
• myForearmGarage.raw  #raw position 300 counts < :garage

• Each (linear) position is defined on a specific (Slide) Axis
• Elbow.to  myForearmGarage  #error because …

• Elbow and Forearm are different axes!
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Positions Between others
And subtracting positions

• LinearAxis::Between defines a position between two others
• e.g.  midPoint = Forearm.between :garage, :retract

• midPoint.raw == (Forearm[:garage].raw + Forearm[:retract].raw) / 2
• Yes, you can define a position as between two Between's, etc.

• Or between two Positions with offsets.
• midPt2 = Forearm.between Forearm[:garage,-300], Forearm[:retract]
• Displayed as:  Forearm between garage – 300 counts and retract

• One can calculate the difference, in raw counts, between positions
• midPoint – midPt2 = 150  #by definition

• Again, positions are bound to the axes on which they were defined
• Elbow.between(PC, CC) – midPt2  #say, what?!

• Elbow and Forearm are different axes!
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Defining AxisMaps
• An AxisMap maps all raw counts to corresponding position names

• Hash mapping raw count “detents” to a name or array of names
• The first position name associated with a count is its “label”
• Others are “aliases” which are acceptable substitutes

• CC.legend => {28000=>:onguides, 0=>:home, 27000=>["closed"], 
18200=>:unsealed, 20700=>:sealed, 7000=>["open", :opened]}

• If label is a quoted String, position's article is omitted for display
• e.g. “CC is closed” or open rather than “CC at closed” or at open

• ccMap = AxisMap.new(
     0=>:home, 7000=>[“open”, :opened],
     18200=>:unsealed, 20700=>:sealed, 28000=>:onguides,
     27000=>"closed"
   )
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Linear Actuator Axis Classes
• Slide => named positions map to raw counts

• No linear “scale”
• Lowest level at which end-users interface with hardware
• Think of a slide trombone with positions for arbitrary “notes”
• e.g. Forearm, Elbow, Carousel

• Clamp => inherits from Slide
• Adds closed?, open?, and closeAndVerifyPuckPresence

• Scale => inherits from Slide
• Adds a linear, numeric scale to Slides
• e.g. Elevator

• Syringe => inherits from Scale
• adds pull, push, fill, empty volume methods
• e.g.  Collection, Processing, Sampler, Analytical syringes

• Errors come from dwarves, which are managed by Slide class
• This is why Scale and Syringe classes report Slide errors
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Basic Slide Operations
• The Slide is the “base class” for linear actuator axes
• slide.configure cfg => forces configuration object cfg to dwarf
• slide.reconfigure cfg => sends cfg only if changed from last
• slide.in(cfg)  {block} => execute block in configuration cfg
• slide.position => return the slide's current position
• slide.goal =>  return the slide's current goal position
• slide.jog counts =>  move specified # of raw encoder counts
• slide.seek  goal  => move to specified goal position

• Without updating servo's configuration
• slide.to goal, config =>  move to specified goal position

• Updating servo's configuration if appropriate
• slide.hold  => hold the current position
• slide.coast =>  turn off the servo
• slide.force =>  apply constant “force”  (slide.force 0 = slide .coast)
• slide.stop  =>  brake to a stop as fast as possible
• slide.log(decimator) {block}  => log slide status while doing block
• slide.status  => return current slide servo status object
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Defining an Axis and 
associating it with an AxisMap

• Axis objects are initially created with no meaningful map
:CC.denotes Clamp.new("Collection Clamp",
   I2C::Servos[:collection], 1, CCconfig, 30)

• CCconfig is the servo's initial or default configuration
• 1 is the dwarf channel number (0..1)
• 30 is the time out in seconds for movements

• Later, to associate CC with its map (from earlier slide):
CC.with ccMap

• Normally, both operations appear in one combined expression:
:CC.denotes Clamp.new("Collection Clamp",
   I2C::Servos[:collection], 1, CCconfig, 30).with( AxisMap.new(
     0=>:home, 7000=>["open", :opened], 
     18200=>:unsealed, 20700=>:sealed, 28000=>:onguides,
     27000=>"closed"
   ))
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Using AxisMaps
• An AxisMap maps all raw counts to corresponding position names
• They are typically accessed via their associated Axis or Positions:

• axis.legend => the AxisMap as a Hash
• axis.list => list of all names without raw positions
• axis.labels => list of only the position labels – omitting aliases
• axis.maxPosition => position mapped to greatest raw counts
• axis.minPosition => position mapped to least raw counts
• axis.advance => move to position with next higher raw counts
• axis.retard => move to position with next lower raw counts
• axis.at?(position) => true if axis is at (or near) specified position
• axis.near?(position) => true if axis is at or near position
• axis.between?(pos1,pos2) => true if axis is (nearly) between
• axis.rawId(rawCount) => position nearest rawCount (reverse map)
• position.advance(detents) => position with next higher raw counts
• position.retard(detents) => position with next lower raw counts
• position.near?(position) => true if positions very near each other
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How Scales Differ from Slides
• Scales inherit all the operations of Slide, adding:

• Linear mapping of logical “amounts” or “units” to raw counts
• rawCount = scale.countsPerUnit * amount + zero

• zero is simply the rawCount value at 0 amount
• scale.zero => -12580  #example case
• scale.gain => scale.countsPerUnit => 32498.0

• AxisMap associated with a Scale:
• Must contain at least two positions whose labels are numeric

• Really, there should be exactly two such positions
• These positions define the scale's linear mapping onto counts
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Scale::Skew objects

• A Scale::Skew is a generic, linear mapping object
• scale.skew => -12580.000+32498*counts
• scale.skew.gain => 32498.0, scale.skew.bias => -12580
• scale.skew.apply(2) => 52416.0  # == 2*32498 – 12580
• scale.skew.reverse(scale.skew.apply(x)) => x
• Skew.bestFit(counts, units) => skew that best fits data
• Skew.interpolate() => interpolates among array of skews
•

• Scale::Skews are also used to calibrate Thermal pads!
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How Syringes differ from Scales

• A syringe is merely a scale with volumetric units
• volume is simply defined as an alias for amount
• Similarly for maxVolume and minVolume
• fill method moves to the syringe's maxPosition
• empty method moves to the syringe's minPosition
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ESP Dwarf DC Motor Servos
• Two identical servo channels

• 64hz sampling timebase (sample rate typically 32hz)

• Each Channel's Inputs:
– Quadrature incremental encoder 

• (A and B 90 degrees out of phase)
– Home flag (typically a hall effect sensor)
– Optional threshold sensor
– Forward and Reverse limit switches
– One General Purpose digital input bit (for gripper)

• Each Channel Outputs:
– PWM  -100% to 100% (15 kHz with 1% resolution)
– One General Purpose digital output bit
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No Floating Point

•MSP430 would not be able to compute floats fast enough

•Avoids whole issue of round off errors

•P and D gains expressed as 16-bit integers/4096

•Positions are 32-bit encoder counts relative to “home” flag

•Time expressed in “tics”
– Each tic corresponds to one controller sample update

– Typically 32hz or 64hz (but could be any submultiple)

•Velocity expressed in 16-bit encoder counts per tic
– Ensure nothing ever moves faster than 32000/counts/tic!!

•Acceleration expressed as counts/tic/tic

•Electrical Current expressed in milliamps

•Pressure expressed in ADC counts (application must convert)
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Configuration Object Details

•:samplePeriod = number of 64hz timebase tics per sample tic
– Default value = 2 (Typically 1 or 2)

•:encoder, :threshold, :home sensor power / polarity
– Default value = :off (may be :positive or :negative)

•:homeDirection = :forward or :reverse
– Default value = :reverse
– :reverse moves negative if home flag inactive

•:brake = short motor terminals on servo error (:false or :true)
– Default value = true

•:debug = output servo state at sample rate while seeking goal
– Default value = false
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Control Gains and Factors

• PID :gain struct with members P, I, and D

– Default values for each are 0

– Servo will not operate until at least one is non-zero

– Effective value of P and D is divided by 4096

– I is effectively divided by 16384

• :friction compensation gain
– cmdVel * friction / 4096 added to PWM output

– cmdVel = Commanded velocity

• :stiction compensation factor
– If negative cmdVel, subtract stiction/2 from PWM
– If positive cmdVel, add stiction/2 to PWM
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Trajectory Generator (1 of 2)
• :acceleration & :deceleration in counts/tic/tic

– Default values for each are 0, normally positive

– Specify negative acceleration to disable “softstart”

– Zero :deceleration implies deceleration=abs(acceleration)

• :maxSpeed = plateau velocity in counts/tic 

– Temporarily reduced when PWM limits reached to 
prevent trajectory errors due to low battery voltage

• :minSpeed = slowest acceptable progress rate (counts/sec) 

– Speed error if maxSpeed reduced below minSpeed

• :maxSettling = max tics to allow to servo to settle at goal
– Default 0, typically 2 – 3 seconds worth of tics
– Just ensures that position error not returned too early
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Trajectory Generator (2 of 2)
• :stopWindow detemines how nearly goal should be reached

– Specified in encoder counts (16 bit limit max)

– Temporarily increased each time goal is passed

– Special Value false indicates no (more) reseeks allowed

– Defaults to Special Value :deceleration = deceleration rate

– Also accepts value :acceleration

•  :hunt determines whether to adjust setpoint after goal reached

– Defaults to false, set true to “fight” to hold exact position at goal

– Setpoint is never adjusted if position within stopWindow

• :thresholdOffset determines how far from threshold to stop when reached

– Defaults to 0 encoder counts

– When threshold reached before goal, goal = position + thresholdOffset

– Used to position top of puck stack with respect to ESP's top plate
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Core Limits

• :maxPWM & :minPWM

– Max must be >= min, but each may be negative or positive

– Constrains servo output, but does not constrain “force” command

– Effective maxSpeed is reduced when servo reaches these PWM limits

•  :maxPositionErr determines absolute maximum tolerable servo error in 
different contexts:

–  SeekErr if stopWindow grows too large due to repeatedly missing goal

– TrajectoryErr if position becomes too far from setpoint while transiting

– PositionErr if position moves too far from goal after arrival

• :maxCurrent determines maximum allowable motor current
– In milliamps
– Should never be set > 2000mA



Copyright MBARI 2010

Pressure Limits

• :maxInPress, :maxOutPress, :minInPress, :minOutPress
– 0 to 4095 ADC counts 

– Maximum/Minimum tolerated Intake and Outlet pressures

– Constraint disabled if corresponding max == min

– All default to 0

• :maxDeltaPress & :minDeltaPress -- (-4095 to 4095)ADC counts 

– Maximum/Minimum tolerated pressure difference

– Constraint disabled if set to special value:  false

– All default to false  (there is no corresponding value true)

•  Generic “Pressure Error” results if any of the above are violated
– One must check status to determine the exact problem
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Pressure Servo Configuration
• :inputDeltaPress determines if pressure delta is sensed or 

derived

– True to input the difference from ADC 7

– False to derive it as (intake – outlet) pressure

– Defaults to false

• :pressBias is subtracted from delta pressure before use

– In servo or limit check

– Defaults to 0

•  :pressGain is the proportional gain of the pressure servo

– Scaled like P and D, pressGain is *4096

–  Reduces acceleration from that normally determined by 
the trajectory generator.

– Never causes command velocity to fall below minSpeed
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Defining an 
I2C::Servo::Configuration 

###  Processing Syringe, derived from default.with … ###

:PSconfig.denotes I2C::Servo::Configuration.default.with(

  :encoder=>:negative, :home=>:negative,

  :homeDirection=>false,

  :maxPositionErr => 65,  #upped from +/- 0.3ul to 2ul

  :gain => PIDgain.new(3500, 3000, 1300),

  :friction => 170,

  :maxSpeed => 100, :minSpeed => 30,

  :acceleration=>5, #deceleration == acceleration if unspecified

  :maxCurrent =>120,     #bracket bends too much if set any higher

  :maxSettling => 3*32

)

• From betty's configure.rb



Copyright MBARI 2010

Servo Configuration Example

###  Processing Syringe, derived from PSconfig … ###

:PSslow1.denotes PSconfig.dup.with (
:maxSpeed => 10,  :minSpeed => 2,

:acceleration => 2

)

• From betty's configure.rb

• Alternative configuration to standard PSconfig on previous page
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Switching Among Configurations
###  The “Hard”, wrong way ###

PS.configure PSslow1

PS.seek  PS.maxVolume/2  #half full (or is it empty?)

PS.configure Psconfig

– But, what if PS was not “in” the PSconfig configuration?

– What if PS was already in PSslow1?

###  The harder, correct way  ###
oldPSconfig = PS.config

begin

PS.reconfigure Psslow1

PS.seek PS.maxVolume/2

ensure  #in case an error occurs between here and previous 'begin'

PS.reconfigure oldPSconfg

end
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Switching Servo Configurations

###  The easy (and correct way) ###

PS.to  PS.maxVolume/2, PSslow1  #half full (or is it empty?)

– Only changes the configuration if necessary

– Don't use .seek unless sure the config already loaded on dwarf.

###  The hard (and also correct way)  ###
PS.in PSslow1 do

PS.to  PS.maxVolume/2

PS.empty   #this is still in PSslow1

end

PS.fill   #old configuration restored (likely PSconfig)

– slide.in {block} constructs may be nested arbitrarily deep
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I2C::Servo::Status Objects

• :enabled = true if servo control is active

• :pastRLS, :pastFLS, :pastThreshold, :home
– True if corresponding switch is closed

• :position = 32-bit signed offset from home position

• :velocity = 16-bit signed in encoder counts/tics

• :current = signed milliamps
– Always agrees with sign of PWM status below

• :PWM = signed percent PWM duty cycle

• :err = 16-bit signed (setpoint – position)

• :voltage = raw motor voltage (in volts)
– This is the only floating point value
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Servo Pressure Status

• Recall that pressure may be a proxy for any arbitrary 
volage input

• :inPress = intake pressure in raw ADC counts (0-4095)

• :outPress = outlet pressure in ADC counts

• :deltaPress = delta pressure in ADC counts
– This is always ADC channel 7
– It is not affected by the :inputDeltaPress 

configuration flag
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Capturing Slide Servo Status Logs

• To record a real-time trace of a Slide servo's behavior:
slide.log(decimator) { block }

– Where block is (usually) code that exercises the actuator

– Returns a large array of I2C::Servo::Status objects

• Size of result array depends on how log {block} runs !!

• Records one sample for every decimator servo updates

– I2C bus traffic can overload slow ARM host board if decimator==1
» Only recovery possible may be to reset dwarf
» Attach faster Linux host to ESP's gateway to avoid this

• If there is an error, partial result is stored in $errLog global variable

– slide.log method calls may not be nested

• Beware that Clamp.close uses slide.log,  use Clamp.to :closed instead

• Example:  
ccLog = CC.log(2)  {CC.to :closed}; nil  #to prevent display of large array

ccLog.each {|stat| puts [stat.current, stat.velocity]}; nil 
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Plotting Slide Servo Status Logs

• Connect an ESP Linux workstation to the ESP's gateway
– This may require use of a USB<->RS232 serial adapter

– /dev/I2Cgate must by symlinked to the that adapter

• The package used for plotting is called quickplot

• Load quickplot interface code

require 'plot'    #only once per session

• To produce each new plot window:

plot  slide.log(2) {blockOfCodeExercisingSlide}

• e.g. plotting default status fields of position, velocity and current:

   plot CC.log(2)  {CC.to :closed}

• e.g. plotting :current,:voltage, :pwm, and :err

plot(CC.log(2) {CC.to :closed},  :current, :voltage, :pwm, :err) 
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Remotely Plotting Servo Logs

• Difficult to configure
• but well worth it for tuning Slide servos' PID gains.

• Does not require opening the ESP enclosure to change any connections

• Add ssh key to workstation's authorized_keys file 

– So that the ESP host can run commands without password prompts

• Test from Linux shell prompt, on ESP host, by invoking:  

$ ssh  workstation  ls
• This is a security breach.  Remove key when done if it worries you.

• Edit remotePlot method utils/plot.rb as necessary

• To change the workstation name and the display number

– As before:

require 'plot'    #only once per session

• To produce each new plot window:
remotePlot  slide.log(2) {blockOfCodeExercisingSlide}
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