

Copyright MBARI 2010

Environmental Sample Processor:
Linear Actuators

7/13/10 Brent Roman brent@mbari.org

Copyright MBARI 2010

Linear Actuator Servo overview
• Dwarves:

• Do all the real-time work closing servo loops
• Send I2C progress and error messages back to requester
• Optionally output debug information to their extra RS232 port
• Optionally interpret debug commands from same RS232 port

• Ruby:
• Converts its objects to and from I2C byte strings
• Optimizes switches between alternative servo configurations
• Converts to and from raw encoder counts and scales or names
• Reinterprets dwarf error messages as Ruby Exception objects
• Retries Error Exceptions when appropriate

Copyright MBARI 2010

Linear Actuator Positions
• LinearAxis::Position Ruby Class
• Maps to and from raw encoder counts
• A symbolic label plus an optional offset in raw encoder counts

• slide[:position, offset]
• Forearm[:garage, -300] #Forearm at garage - 300 counts
• May also be written: Forearm[:garage]-300

• May usually be replaced by just the label when offset is zero
• As in: Forearm.to :garage
• Same as: Forearm.to Forearm[:garage]+0

• Positions are Ruby objects
• myForearmGarage = Forearm[:garage, -300]
• Forearm.to myForearmGarage
• myForearmGarage.raw #raw position 300 counts < :garage

• Each (linear) position is defined on a specific (Slide) Axis
• Elbow.to myForearmGarage #error because …

• Elbow and Forearm are different axes!

Copyright MBARI 2010

Positions Between others
And subtracting positions

• LinearAxis::Between defines a position between two others
• e.g. midPoint = Forearm.between :garage, :retract

• midPoint.raw == (Forearm[:garage].raw + Forearm[:retract].raw) / 2
• Yes, you can define a position as between two Between's, etc.

• Or between two Positions with offsets.
• midPt2 = Forearm.between Forearm[:garage,-300], Forearm[:retract]
• Displayed as: Forearm between garage – 300 counts and retract

• One can calculate the difference, in raw counts, between positions
• midPoint – midPt2 = 150 #by definition

• Again, positions are bound to the axes on which they were defined
• Elbow.between(PC, CC) – midPt2 #say, what?!

• Elbow and Forearm are different axes!

Copyright MBARI 2010

Defining AxisMaps
• An AxisMap maps all raw counts to corresponding position names

• Hash mapping raw count “detents” to a name or array of names
• The first position name associated with a count is its “label”
• Others are “aliases” which are acceptable substitutes

• CC.legend => {28000=>:onguides, 0=>:home, 27000=>["closed"],
18200=>:unsealed, 20700=>:sealed, 7000=>["open", :opened]}

• If label is a quoted String, position's article is omitted for display
• e.g. “CC is closed” or open rather than “CC at closed” or at open

• ccMap = AxisMap.new(
 0=>:home, 7000=>[“open”, :opened],
 18200=>:unsealed, 20700=>:sealed, 28000=>:onguides,
 27000=>"closed"
)

Copyright MBARI 2010

Linear Actuator Axis Classes
• Slide => named positions map to raw counts

• No linear “scale”
• Lowest level at which end-users interface with hardware
• Think of a slide trombone with positions for arbitrary “notes”
• e.g. Forearm, Elbow, Carousel

• Clamp => inherits from Slide
• Adds closed?, open?, and closeAndVerifyPuckPresence

• Scale => inherits from Slide
• Adds a linear, numeric scale to Slides
• e.g. Elevator

• Syringe => inherits from Scale
• adds pull, push, fill, empty volume methods
• e.g. Collection, Processing, Sampler, Analytical syringes

• Errors come from dwarves, which are managed by Slide class
• This is why Scale and Syringe classes report Slide errors

Copyright MBARI 2010

Basic Slide Operations
• The Slide is the “base class” for linear actuator axes
• slide.configure cfg => forces configuration object cfg to dwarf
• slide.reconfigure cfg => sends cfg only if changed from last
• slide.in(cfg) {block} => execute block in configuration cfg
• slide.position => return the slide's current position
• slide.goal => return the slide's current goal position
• slide.jog counts => move specified # of raw encoder counts
• slide.seek goal => move to specified goal position

• Without updating servo's configuration
• slide.to goal, config => move to specified goal position

• Updating servo's configuration if appropriate
• slide.hold => hold the current position
• slide.coast => turn off the servo
• slide.force => apply constant “force” (slide.force 0 = slide .coast)
• slide.stop => brake to a stop as fast as possible
• slide.log(decimator) {block} => log slide status while doing block
• slide.status => return current slide servo status object

Copyright MBARI 2010

Defining an Axis and
associating it with an AxisMap

• Axis objects are initially created with no meaningful map
:CC.denotes Clamp.new("Collection Clamp",
 I2C::Servos[:collection], 1, CCconfig, 30)

• CCconfig is the servo's initial or default configuration
• 1 is the dwarf channel number (0..1)
• 30 is the time out in seconds for movements

• Later, to associate CC with its map (from earlier slide):
CC.with ccMap

• Normally, both operations appear in one combined expression:
:CC.denotes Clamp.new("Collection Clamp",
 I2C::Servos[:collection], 1, CCconfig, 30).with(AxisMap.new(
 0=>:home, 7000=>["open", :opened],
 18200=>:unsealed, 20700=>:sealed, 28000=>:onguides,
 27000=>"closed"
))

Copyright MBARI 2010

Using AxisMaps
• An AxisMap maps all raw counts to corresponding position names
• They are typically accessed via their associated Axis or Positions:

• axis.legend => the AxisMap as a Hash
• axis.list => list of all names without raw positions
• axis.labels => list of only the position labels – omitting aliases
• axis.maxPosition => position mapped to greatest raw counts
• axis.minPosition => position mapped to least raw counts
• axis.advance => move to position with next higher raw counts
• axis.retard => move to position with next lower raw counts
• axis.at?(position) => true if axis is at (or near) specified position
• axis.near?(position) => true if axis is at or near position
• axis.between?(pos1,pos2) => true if axis is (nearly) between
• axis.rawId(rawCount) => position nearest rawCount (reverse map)
• position.advance(detents) => position with next higher raw counts
• position.retard(detents) => position with next lower raw counts
• position.near?(position) => true if positions very near each other

Copyright MBARI 2010

How Scales Differ from Slides
• Scales inherit all the operations of Slide, adding:

• Linear mapping of logical “amounts” or “units” to raw counts
• rawCount = scale.countsPerUnit * amount + zero

• zero is simply the rawCount value at 0 amount
• scale.zero => -12580 #example case
• scale.gain => scale.countsPerUnit => 32498.0

• AxisMap associated with a Scale:
• Must contain at least two positions whose labels are numeric

• Really, there should be exactly two such positions
• These positions define the scale's linear mapping onto counts

Copyright MBARI 2010

Scale::Skew objects

• A Scale::Skew is a generic, linear mapping object
• scale.skew => -12580.000+32498*counts
• scale.skew.gain => 32498.0, scale.skew.bias => -12580
• scale.skew.apply(2) => 52416.0 # == 2*32498 – 12580
• scale.skew.reverse(scale.skew.apply(x)) => x
• Skew.bestFit(counts, units) => skew that best fits data
• Skew.interpolate() => interpolates among array of skews
•

• Scale::Skews are also used to calibrate Thermal pads!

Copyright MBARI 2010

How Syringes differ from Scales

• A syringe is merely a scale with volumetric units
• volume is simply defined as an alias for amount
• Similarly for maxVolume and minVolume
• fill method moves to the syringe's maxPosition
• empty method moves to the syringe's minPosition

Copyright MBARI 2010

ESP Dwarf DC Motor Servos
• Two identical servo channels

• 64hz sampling timebase (sample rate typically 32hz)

• Each Channel's Inputs:
– Quadrature incremental encoder

• (A and B 90 degrees out of phase)
– Home flag (typically a hall effect sensor)
– Optional threshold sensor
– Forward and Reverse limit switches
– One General Purpose digital input bit (for gripper)

• Each Channel Outputs:
– PWM -100% to 100% (15 kHz with 1% resolution)
– One General Purpose digital output bit

Copyright MBARI 2010

No Floating Point

•MSP430 would not be able to compute floats fast enough

•Avoids whole issue of round off errors

•P and D gains expressed as 16-bit integers/4096

•Positions are 32-bit encoder counts relative to “home” flag

•Time expressed in “tics”
– Each tic corresponds to one controller sample update

– Typically 32hz or 64hz (but could be any submultiple)

•Velocity expressed in 16-bit encoder counts per tic
– Ensure nothing ever moves faster than 32000/counts/tic!!

•Acceleration expressed as counts/tic/tic

•Electrical Current expressed in milliamps

•Pressure expressed in ADC counts (application must convert)

Copyright MBARI 2010

Configuration Object Details

•:samplePeriod = number of 64hz timebase tics per sample tic
– Default value = 2 (Typically 1 or 2)

•:encoder, :threshold, :home sensor power / polarity
– Default value = :off (may be :positive or :negative)

•:homeDirection = :forward or :reverse
– Default value = :reverse
– :reverse moves negative if home flag inactive

•:brake = short motor terminals on servo error (:false or :true)
– Default value = true

•:debug = output servo state at sample rate while seeking goal
– Default value = false

Copyright MBARI 2010

Control Gains and Factors

• PID :gain struct with members P, I, and D

– Default values for each are 0

– Servo will not operate until at least one is non-zero

– Effective value of P and D is divided by 4096

– I is effectively divided by 16384

• :friction compensation gain
– cmdVel * friction / 4096 added to PWM output

– cmdVel = Commanded velocity

• :stiction compensation factor
– If negative cmdVel, subtract stiction/2 from PWM
– If positive cmdVel, add stiction/2 to PWM

Copyright MBARI 2010

Trajectory Generator (1 of 2)
• :acceleration & :deceleration in counts/tic/tic

– Default values for each are 0, normally positive

– Specify negative acceleration to disable “softstart”

– Zero :deceleration implies deceleration=abs(acceleration)

• :maxSpeed = plateau velocity in counts/tic

– Temporarily reduced when PWM limits reached to
prevent trajectory errors due to low battery voltage

• :minSpeed = slowest acceptable progress rate (counts/sec)

– Speed error if maxSpeed reduced below minSpeed

• :maxSettling = max tics to allow to servo to settle at goal
– Default 0, typically 2 – 3 seconds worth of tics
– Just ensures that position error not returned too early

Copyright MBARI 2010

Trajectory Generator (2 of 2)
• :stopWindow detemines how nearly goal should be reached

– Specified in encoder counts (16 bit limit max)

– Temporarily increased each time goal is passed

– Special Value false indicates no (more) reseeks allowed

– Defaults to Special Value :deceleration = deceleration rate

– Also accepts value :acceleration

• :hunt determines whether to adjust setpoint after goal reached

– Defaults to false, set true to “fight” to hold exact position at goal

– Setpoint is never adjusted if position within stopWindow

• :thresholdOffset determines how far from threshold to stop when reached

– Defaults to 0 encoder counts

– When threshold reached before goal, goal = position + thresholdOffset

– Used to position top of puck stack with respect to ESP's top plate

Copyright MBARI 2010

Core Limits

• :maxPWM & :minPWM

– Max must be >= min, but each may be negative or positive

– Constrains servo output, but does not constrain “force” command

– Effective maxSpeed is reduced when servo reaches these PWM limits

• :maxPositionErr determines absolute maximum tolerable servo error in
different contexts:

– SeekErr if stopWindow grows too large due to repeatedly missing goal

– TrajectoryErr if position becomes too far from setpoint while transiting

– PositionErr if position moves too far from goal after arrival

• :maxCurrent determines maximum allowable motor current
– In milliamps
– Should never be set > 2000mA

Copyright MBARI 2010

Pressure Limits

• :maxInPress, :maxOutPress, :minInPress, :minOutPress
– 0 to 4095 ADC counts

– Maximum/Minimum tolerated Intake and Outlet pressures

– Constraint disabled if corresponding max == min

– All default to 0

• :maxDeltaPress & :minDeltaPress -- (-4095 to 4095)ADC counts

– Maximum/Minimum tolerated pressure difference

– Constraint disabled if set to special value: false

– All default to false (there is no corresponding value true)

• Generic “Pressure Error” results if any of the above are violated
– One must check status to determine the exact problem

Copyright MBARI 2010

Pressure Servo Configuration
• :inputDeltaPress determines if pressure delta is sensed or

derived

– True to input the difference from ADC 7

– False to derive it as (intake – outlet) pressure

– Defaults to false

• :pressBias is subtracted from delta pressure before use

– In servo or limit check

– Defaults to 0

• :pressGain is the proportional gain of the pressure servo

– Scaled like P and D, pressGain is *4096

– Reduces acceleration from that normally determined by
the trajectory generator.

– Never causes command velocity to fall below minSpeed

Copyright MBARI 2010

Defining an
I2C::Servo::Configuration

Processing Syringe, derived from default.with …

:PSconfig.denotes I2C::Servo::Configuration.default.with(

 :encoder=>:negative, :home=>:negative,

 :homeDirection=>false,

 :maxPositionErr => 65, #upped from +/- 0.3ul to 2ul

 :gain => PIDgain.new(3500, 3000, 1300),

 :friction => 170,

 :maxSpeed => 100, :minSpeed => 30,

 :acceleration=>5, #deceleration == acceleration if unspecified

 :maxCurrent =>120, #bracket bends too much if set any higher

 :maxSettling => 3*32

)

• From betty's configure.rb

Copyright MBARI 2010

Servo Configuration Example

Processing Syringe, derived from PSconfig …

:PSslow1.denotes PSconfig.dup.with (
:maxSpeed => 10, :minSpeed => 2,

:acceleration => 2

)

• From betty's configure.rb

• Alternative configuration to standard PSconfig on previous page

Copyright MBARI 2010

Switching Among Configurations
The “Hard”, wrong way

PS.configure PSslow1

PS.seek PS.maxVolume/2 #half full (or is it empty?)

PS.configure Psconfig

– But, what if PS was not “in” the PSconfig configuration?

– What if PS was already in PSslow1?

The harder, correct way
oldPSconfig = PS.config

begin

PS.reconfigure Psslow1

PS.seek PS.maxVolume/2

ensure #in case an error occurs between here and previous 'begin'

PS.reconfigure oldPSconfg

end

Copyright MBARI 2010

Switching Servo Configurations

The easy (and correct way)

PS.to PS.maxVolume/2, PSslow1 #half full (or is it empty?)

– Only changes the configuration if necessary

– Don't use .seek unless sure the config already loaded on dwarf.

The hard (and also correct way)
PS.in PSslow1 do

PS.to PS.maxVolume/2

PS.empty #this is still in PSslow1

end

PS.fill #old configuration restored (likely PSconfig)

– slide.in {block} constructs may be nested arbitrarily deep

Copyright MBARI 2010

I2C::Servo::Status Objects

• :enabled = true if servo control is active

• :pastRLS, :pastFLS, :pastThreshold, :home
– True if corresponding switch is closed

• :position = 32-bit signed offset from home position

• :velocity = 16-bit signed in encoder counts/tics

• :current = signed milliamps
– Always agrees with sign of PWM status below

• :PWM = signed percent PWM duty cycle

• :err = 16-bit signed (setpoint – position)

• :voltage = raw motor voltage (in volts)
– This is the only floating point value

Copyright MBARI 2010

Servo Pressure Status

• Recall that pressure may be a proxy for any arbitrary
volage input

• :inPress = intake pressure in raw ADC counts (0-4095)

• :outPress = outlet pressure in ADC counts

• :deltaPress = delta pressure in ADC counts
– This is always ADC channel 7
– It is not affected by the :inputDeltaPress

configuration flag

Copyright MBARI 2010

Capturing Slide Servo Status Logs

• To record a real-time trace of a Slide servo's behavior:
slide.log(decimator) { block }

– Where block is (usually) code that exercises the actuator

– Returns a large array of I2C::Servo::Status objects

• Size of result array depends on how log {block} runs !!

• Records one sample for every decimator servo updates

– I2C bus traffic can overload slow ARM host board if decimator==1
» Only recovery possible may be to reset dwarf
» Attach faster Linux host to ESP's gateway to avoid this

• If there is an error, partial result is stored in $errLog global variable

– slide.log method calls may not be nested

• Beware that Clamp.close uses slide.log, use Clamp.to :closed instead

• Example:
ccLog = CC.log(2) {CC.to :closed}; nil #to prevent display of large array

ccLog.each {|stat| puts [stat.current, stat.velocity]}; nil

Copyright MBARI 2010

Plotting Slide Servo Status Logs

• Connect an ESP Linux workstation to the ESP's gateway
– This may require use of a USB<->RS232 serial adapter

– /dev/I2Cgate must by symlinked to the that adapter

• The package used for plotting is called quickplot

• Load quickplot interface code

require 'plot' #only once per session

• To produce each new plot window:

plot slide.log(2) {blockOfCodeExercisingSlide}

• e.g. plotting default status fields of position, velocity and current:

 plot CC.log(2) {CC.to :closed}

• e.g. plotting :current,:voltage, :pwm, and :err

plot(CC.log(2) {CC.to :closed}, :current, :voltage, :pwm, :err)

Copyright MBARI 2010

Remotely Plotting Servo Logs

• Difficult to configure
• but well worth it for tuning Slide servos' PID gains.

• Does not require opening the ESP enclosure to change any connections

• Add ssh key to workstation's authorized_keys file

– So that the ESP host can run commands without password prompts

• Test from Linux shell prompt, on ESP host, by invoking:

$ ssh workstation ls
• This is a security breach. Remove key when done if it worries you.

• Edit remotePlot method utils/plot.rb as necessary

• To change the workstation name and the display number

– As before:

require 'plot' #only once per session

• To produce each new plot window:
remotePlot slide.log(2) {blockOfCodeExercisingSlide}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

