

Communications Overview

5/22/14 Brent Roman brent@mbari.org

ESP Networking Protocols

- FTP (File Transfer Protocol)
 - Fetching logs, images and sensor data files
 - The ESP GUI requires FTP access
- SSH (Secure Shell)
 - Encyrpted remote interactive sessions and file transfers
- SMTP (Simple Mail Transfer Protocol)
 - Status update emails
- HTTP (HyperText Transfer Protocol) [optional]
 - Alternative to FTP for browsers (like Safari) that don't support it
- Telnet (Look ma, no acronyms!) [optional]
 - Ancient, insecure alternative to SSH
 - May be disabled if security is a concern

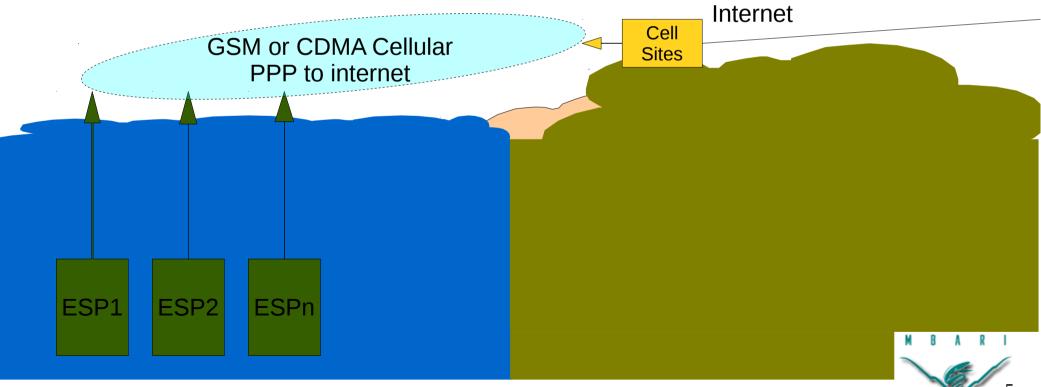
ESP Ethernet Networking

- Just plug your new ESP into your lab network!
 - The ESP will appear as a host with the name you assigned it!
 - Requires your network accept new hosts with self-assigned names
 - If your network does not work that way
 - You likely have network admin people preventing this
 - See if you can cajole them to enabling DHCP and DDNS
 - Failing that...
- Connect a laptop and the ESP directly to each other
 - They must be on the same cable or the same ethernet switch
 - The ESP will be available at IP address 10.10.10.10
 - Configure your laptop to IP address 10.10.10.x where x != 10
 - Via this initial "direct" link, alter the ESP's networking for your needs.

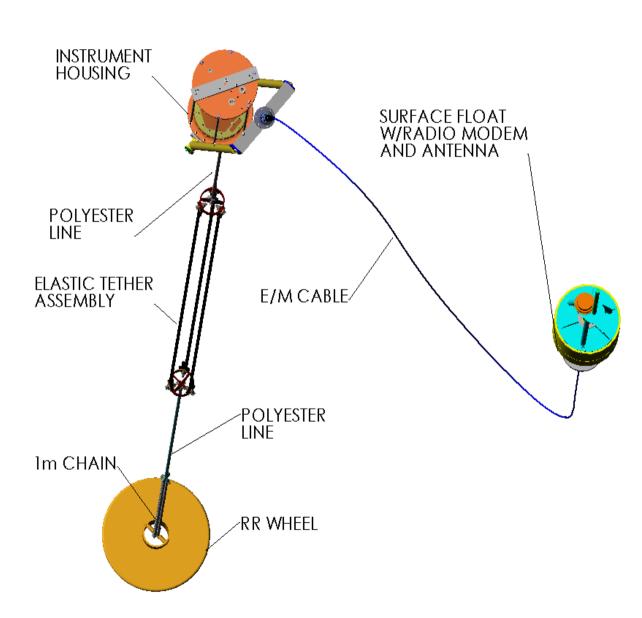
vi /etc/sysconfig/ifcfg-eth0

- Will likely no longer "just work" when moved to other networks.

ESP Serial Console


- A direct link between your laptop and the ESP
 - Cannot be used to transfer data files
 - Useful for debugging
 - And initial network configuration, when all else fails.
 - Typically requires an RS-232 ↔ USB adapter
 - Run a "terminal emulator" program on your laptop
 - 115.2 Kbaud, No Parity, 1 Stop bit
 - 3-wire interface no handshake lines.
- Login with as usual
 - Remember to logout before unplugging the serial cable.

ESP Networking via Cellular Radio Modems



Copyright MBARI 2014

Shallow 10-30m Mooring

Copyright MBARI 2014

GSM Cellular Modem Sierra Wireless AirLink FXT009

- Compatible with T-Mobile and AT&T neworks in USA
 As well others in most of the rest of the world
- RS-232 (slow) serial interface

 115.2 kBits/s
 RTS, CTS, and Carrier Detect required
- Uses old GSM '2G' technology
 - AT&T plans to sunset their 2G network on 1/1/2017
 - T-Mobile is committed to continuing [but limited] support
 - Both companies are frustrating to deal with
- Uses mini SIM cards just like those in many phones
 - Deployments typically use < 150MB data / month
 - Cards expire after a few months of non-use

CDMA Cellular Modem MultiTech MTCBA-C1X-N3

- Only compatible with Verizon network in USA
 Little coastal coverage in Mexico or Canada
 - Nothing in Europe or Oceania
- RS-232 (slow) serial interface
 115.2 kBits/s RTS, CTS, and Carrier Detect required
- No SIM cards
 - Service is tied directly to the modem itself
- Excellent customer service and web account administration
- Long latencies
 - Anytime link is idle for more than a few seconds

Freewave Radios 900Mhz Unlicensed

- Build your own cell site!
 - No frustrating cellular providers to deal with!
- Not used in the past 2 years for ESP deployments
- No data fees, but expensive equipment and maintainance
- About the same effective speed as commercial networks
 - But much lower latency

Copyright MBARI 2014

- Might make sense today for densely covering a bay
 - One shore site can could service 20 or so ESPs
 - A well sited shore station can cover 8 miles over 130 degree arc.

Cellular Network Challenges

- Network IP address varies (assigned "private" IP addresses)
 ESPs can register their addresses with a public DDNS service
- No incoming connections accepted
 - Even after the ESP's IP address is published
- Verizon, AT&T & T-Mobile can provide a public IP address that accepts connections
 - By special arrangement for "business customers" only.
 - WHOI has public addresses from AT&T for their deployments in the Gulf of Maine
 - This wasn't an option when MBARI deployed cell comms first in New Zealand
- So, if ESPs on typical cellular networks must initiate all network connections...
 - How can a server accept incoming requests?
 - How can one fetch files when desired?
 - Or, log in to start an interactive session?

ESP Virtual Private Network

- ESPs maintain a VPN connection to a designated shore server
 - This VPN carries all traffic between the ESP and shore
 - Makes the ESPs look like they are on the same LAN segment
 - Almost all cellular carriers now allow VPNs
 - They are very common among corporate users
- All traffic within the ESP VPN is encrypted
 - via Microsoft's PPTP (Point-to-Point Tunneling Protocol)
 - Supported by all mainstream operating systems.
 - Hackable, but still very difficult to break into.
 - Insecure protocols within it are protected
 - like telnet and FTP
- VPNs may also be used to jump network firewalls in wired networks

MBARI's ESP Shore Server

- ESP Shore Servers
 - accept VPN connections from deployed ESPs and users
 - Upload data from deployed ESPs (typically once an hour)
 - Make that data available publically
 - via FTP and HTTP
 - Forward Email from deployed ESPs
 - via a single gmail account, common to all
 - Emails are clear text from ESPs
 - but encrypted when forwarded to Google's servers.
 - Forward designated ssh ports directly to corresponding ESPs
 - So users can administer ESPs without having to join the VPN
 - All in a \$100 commodity WiFi router
 - Running OpenWRT firmware (natch!)

Accessing ESPs inside their VPN

- An ESP deployed in shore server's VPN is only acessible from:
 within that VPN
 - From the same LAN segment (in the same lab)
- Otherwise, all access must pass through the shore server
 - FTP and HTTP access is to a mirror of the data on the ESP
 - Much faster and conserves cell bandwidth
 - SSH access is via designated port numbers
 - This allows administrators to issue commands to the ESP without joining its VPN
 - Requires SSH be installed on your laptop or smart phone [standard on Macs and Linux]
- Example of establishing an ESP client session with ESPmack while deployed:

\$ ssh -p 2003 esp@espshore.mbari.org esp@ESPmack\$ espclient myName myName:001-> showlog

#port 2003 leads to ESPmack on the VPN
#connect to the running mission
#the ESP client command prompt

Preparing Shore Stations for Deployment

- Each shore station uploads from ESPs serviced by it
 - The ESPs uploaded from are ~ftp/ESP*
 - Each \sim ftp/ESP* directory is "seeded" with subdirs and files to upload:
 - Typically, just the subdirectory "esp" and the file "messages"
 - First, download any old data you want to keep from the server
 - Just before deployment, for each ESPname:

esp@...\$ cd ~ftp

esp@/home/ftp\$ rm -rf ESPname #delete old data
esp@/home/ftp\$ mkdir ESPname #create empty directory
esp@/home/ftp/ESPname\$ > messages #seed with empty kernel log
esp@/home/ftp/ESPname\$ mkdir esp #and esp data directory

Add following command <u>only</u> if you wish to automatically upload hires images
 esp@/home/ftp/ESPname\$ mkdir esp/hires #not normally used

Preparing ESPs for uploading to shore

- Each ESP's deployment data is based at /var/log
 - /var/log/messages (kernel messages) should be emptied
 - /var/log/esp should be emptied after archiving it elsewhere

root@ESPname # cd /var/log

root@ESPname # > messages #do not delete this file with rm!

- If you do, reboot or:

service syslog restart

• As User esp:

esp@ESPname \$ rm -rf /var/log/esp/* #deletes old deployment data!

- The ESP's Real-Time clock is not sync'd to network time
 - They drift a couple minutes a month, set them, as root user, with:

```
root@espName # date -s HH:MM #or YYYY.MM.DD-HH:MM
root@espName # hwclock -uw #RTC is kept in UTC
```


Starting (& Stopping) Hourly Uploads of ESPs from shore stations

- Each shore station uploads every hour from its ESPs
 This process must be manually started after each reboot
- To start hourly uploads:

esp@station \$ start hourly upload

• To stop hourly uploads:

esp@station \$ stop hourly

- To upload a from a particular ESP immediately: esp@station \$ upload ESPname
 - To upload from all deployed ESPs immediately: esp@station \$ upload

