## Managing Unix Users and Groups

- $\cdot$  Users and Groups are identified by number
  - Typically 0 .. 65536 (16-bit)
    - Newer Linux allows 32-bit
  - · UID = User ID
    - · UID zero is the "root" or super user
    - $\cdot$  The super user never sees a "permission denied" error
    - · Low numbered UIDs (and GIDs) are somewhat standardized
  - · GID = group ID
    - · Groups allow resources to be shared among member users
- Text configuration files map between user and group names and numeric ids
  - · /etc/passwd associates text info with each UID
  - · /etc/group associates group names with GIDs and lists member users
  - $\cdot$  /etc/shadow associates encrypted passwords and expiry with user names
  - http://www.slackbook.org/html/essential-sysadmin-hardusers.html
  - · Names are just for convenience, UIDs and GIDs really matter
    - $\cdot$  To rename a user, just change text files
    - NFS requires that UIDs and GIDs match across machines
- Processes normally inherit the UID and GID of their creator
- · Root User processes can masquerade as any other user
- · Special permission on binary executables allow them to do the same
  - $\cdot$  Even when invoked by "normal" users
    - This is how the su command works



## File permissions

- Everything in Unix is a file
  - · Serial ports, disk drives, shared memory, etc.
  - · All these resources have file permissions
  - · Processes must pass a security check to open any file
- Permissions are a bit mask
- http://www.comptechdoc.org/os/linux/usersguide/linux\_ugfilesp.html
- http://www.perlfect.com/articles/chmod.shtml

•