

Copyright MBARI 2022

1

Understanding and Recovering from Errors

6/1/22 Brent Roman brent@mbari.org

Copyright MBARI 2022

2

Errors are Unhandled Exceptions
• Great. So, what is an Unhandled Exception?

• Exceptions are:
• Unusual conditions that obstruct the normal flow of a program
• Handled by special code outside the usual flow

• In modern languages, when a method cannot return a valid value...
• It “throws” (or “raises”) an exception instead!

• 10/0 => ZeroDivisionError
• Math.sqrt()=> ArgumentError: wrong # of arguments(0 for 1)
• Math.sqrt(-1)=> Errno::EDOM -- argument out of domain

• Exceptions propagate up the call stack in search of a “handler”
• Handler code may be very specific or generic

• If no handler is found, the exception is said to be “unhandled”

Copyright MBARI 2022

3

Ruby Exception Objects
• Consist of:

• a text message describing the exception
• A backtrace to locate the point of failure in nested methods
• Subclasses may (and do) associate extra information

• e.g. The servo status associated with Slide::Error

• Only subclasses of built-in Exception class may be raised/thrown
• One cannot throw/raise a Thread or an Integer, etc.
• Exceptions are otherwise just like any other Ruby object
• Exceptions are always raised on a specific Thread

• Ruby's “rescue” clause encloses all exception handlers
• If no matching rescue clause found, the thread is terminated

• ESP threads always include a top-level Exception handler
• Logs error details just before the failing thread exits

Copyright MBARI 2022

4

Exception Class Hierarchy

• ArgumentError.ancestors =>
[ArgumentError, StandardError, Exception, Object, …]

• NameError.ancestors =>
• [NameError, ScriptError, Exception, Object, …]

• Slide::Error.ancestors =>
[Slide::Error, LinearAxis::Error, Axis::Error, AxisKernel::Error,

StandardError, Exception, Object, …]

• Example of a class that cannot be raised as an Exception:
• Slide.ancestors =>

[Slide, LinearAxis, Axis, … , AxisKernel, Object, …]
• because it does not inherit from the Exception class

Copyright MBARI 2022

5

Deriving Ruby Exception Objects
• Define my own error (exception) class and raise it

• class MyErr < StandardError; end
• raise MyErr.new “Your honor, I respectfully object!”

• Define a Slide::Error with associated (servo status) reply and axis:

class Slide < LinearAxis
 class Error < LinearAxis::Error
 def initialize text, axis, reply=nil
 @reply = reply
 super text, axis
 end
 attr_reader :reply
 end

• So, in addition to the base Exception's backtrace and message
Slide::Error exceptions store servo axis and status reply

Copyright MBARI 2022

6

Backtraces (1 of 2)
• Answers the question: Where did the error occur?
• Example:

ESPbruce:002:0> CC.to :spoon #there is no spoon :-)
Axis::Error in quick -- Unknown Collection Clamp position: spoon

ESPmack:003:0> backtrace
/home/brent/esp2/lib/axis.rb:513:in `baseRaw'
/home/brent/esp2/lib/axis.rb:297:in `raw'
/home/brent/esp2/lib/axismap.rb:175:in `fetch'
/home/brent/esp2/lib/axismap.rb:163:in `fetch'
/home/brent/esp2/lib/axis.rb:281:in `fetch'
/home/brent/esp2/lib/axis.rb:292:in `raw'
/home/brent/esp2/lib/axis.rb:553:in `raw'
/home/brent/esp2/lib/slide.rb:325:in `toRawGoal'
/home/brent/esp2/lib/slide.rb:333:in `seek'
/home/brent/esp2/lib/slide.rb:382:in `to'
(ESP):2
/opt/mbari/lib/ruby/1.8/irb/workspace.rb:52:in `irb_binding'
/opt/mbari/lib/ruby/1.8/irb/workspace.rb:52

=> #<Axis::Error: Unknown Collection Clamp position: spoon>

 Use your text editor to seek to line numbers in each file referenced
In vi, simply enter a line number at the : prompt
In nedit, type control-L to type line number into a dialog box

Copyright MBARI 2022

7

Backtraces (2 or 2)
• One may also list the offending Ruby code within the ESP app

• First, let’s remember the most recent error
-> err = Thread.current.exception.last
-> list err #list the error line + a few following
-> list err, 20, -10 #20 lines starting 10 before

• To access backtrace levels above the lowest
-> err[-4] #the 4th call level from the topmost
/home/brent/esp2/lib/slide.rb:382:in `to'

– equivalent to writing -> err.backtrace[-4]

-> list err[-4], 5, -2
def moveTo goal, tmpCfg=nil, maxDuration=@maxDuration
#like seek, but allows for a servo configuration for just this move
 return seek goal, maxDuration if tmpCfg.nil? or tmpCfg.equal? @config
 inConfiguration(tmpCfg) {seek goal, maxDuration}
end

Copyright MBARI 2022

8

Rescuing Ruby Exceptions
• Exception handlers are just blocks of code within a rescue clause

def safeDivide num, den
 num/den
rescue ZeroDivisionError
 prompt "Divide by zero!? "
rescue StandardError => err
 Log.recordException err #does not raise beyond here

:silly #return :silly on other errors
end

• The exception's derived class determines how it is handled
• Not its message text

• Error text messages just attempt to explain the error to users

Copyright MBARI 2022

9

ESP Top-Level Exception Handling
• Each ESP thread has an associated queue of unhandled exceptions

• Thread[name].exception => list of most recent errors
• Only the most recent 20 or so unhandled exceptions are preserved
• The last is the most recent, the first is the oldest
• Thread[name].exception displays all thread's recent errors

• The backtrace method with no arguments method displays
Thread.current.exception.last.backtrace

• backtrace :name displays
Thread[:name].exception.last.backtrace

• backtrace thread displays
thread.exception.last.backtrace

• e.g. backtrace MainThread == backtrace

• To save the 2nd to last error (prevent losing it off the queue)
myErr = thread.exception[-2]

• Later use: backtrace myErr to display exception's backtrace

Copyright MBARI 2022

10

Ruby Script Errors
• NameError ==> specified method or variable is not defined

• SyntaxError ==> grammatical error
puts "foo" If 3>2 #If should be lowercase if

• LoadError ==> cannot process specified Ruby script file
execute “missingFile”

• The above errors will always require that Ruby script be edited.

Copyright MBARI 2022

11

Generic Runtime Ruby Errors
• ArgumentError ==> number and/or class of objects being passed

into a method are incompatible with its definition

• TypeError ==> method does not handle the type of object passed in

• Interrupt ==> Unix INTerrupt signal sent to ESP Ruby process

• SignalException ==> Another Unix signal sent to ESP process

• IRB::Abort ==> Control-C pressed on ESP’s server terminal

• UserAbort ==> Control-C pressed on espclient terminal

• RuntimeError ==> generic error (text message will describe it)
• raise “something bad's happened” #raises a RuntimeError

• ZeroDivisionError ==> e.x. 10/0

Copyright MBARI 2022

12

Internal ESP logging errors

• Log::Locked ==> can’t start 2nd ESP app in the same ESP::Mode

Log errors below indicate serious bugs or configuration problems

• Log::CannotDump ==> attempt to log object containing files or procs
Certain objects cannot be converted to a byte stream

• Log::Error ==> other internal error

• Log::Reader::Error ==> invalid log file format encountered by dumplog
• May be caused by read log from different type of ESP

• i.e. trying to dump a standard core's log from an MFB
• Or trying to dump MFB equipped ESP's log from one lacking MFB

Copyright MBARI 2022

13

Scheduling Errors
• Schedule::EventInPast ==> time is in the past

trying to schedule an operation (or delay) before current time

• Schedule::Stop ==> scheduler has been stopped by error or user
produced as ESP app terminates (no recovery possible)

• Delay::Error ==> invalid duration syntax
e.g. delay “1 fortnight”

• Delay::TooLate ==> phase start time in past by > Delay::MaxLate
Did the previous phase run long?

• Or, phase start time in future > Delay::MaxWait

• Delay::Late ==> phase start time past by < Delay::MaxLate
Warning only. Did the previous phase run long?

Copyright MBARI 2022

14

Thread Errors
• Thread::Aborted ==> another thread requested this one be aborted

t.abort #raises Thread::Abort in thread t

• Thread::ParentDied ==> the thread that spawned us had a fatal error
Thread::ChildDied ==> a thread this one spawned had a fatal error

Child threads may “orphan” themselves to avoid these errors

• Thread::Checkpoint::Resume ==> users should never see this...
Exception raised in a moribund thread to resume it

Copyright MBARI 2022

15

Common System (Errno::) Errors

• ECONNREFUSED ==> host refused requested network service
• may indicate that the host is still booting up

• EDOM ==> invalid {numeric} domain {e.g. sqrt(-1)}

• ENOTTY ==> data file used where an interactive terminal required

• EPIPE ==> connection between processing broken
• a pipe error often indicates that a network connection timed out

• EPERM ==> file permission error
• e.g. user has no permission to access or write to file in question

Copyright MBARI 2022

16

I2C Bus Errors
• I2C::DuplicateAddress::Error ==> two dwarves have same address

check dwaves' dip switches very carefully
• I2C::LAN::NoGateway::Error ==> the I2C network lacks its gateway

configuration error – not generally recoverable
• I2C::Parser::Error ==> response sent by dwarf improperly formatted

• could be caused by very outdated firmware or electrical noise
• I2C::Request::Timeout ==> expected response not received in time

usually indicates a motor or sensor is failing – not a network failure
• I2C::UnexpectedReply ==> received unexpected dwarf response

May happen when rapidly logging data. Unexpected replies ignored.
• I2C::NodeOffline ==> dwarf is not responding to its address

This is a network problem
• I2C::MsgErr ==> host is trying to send improperly formatted message

Can occur in simulation of “unmodeled” operations
• Tag::Error ==> Message tags are inconsistent

Internal ESP Error

Copyright MBARI 2022

17

I2C Message Processing Errors
• I2C::Solenoid::Error ==> trying to send invalid solenoid control msg

likely a bug in lib/solenoid.rb
• I2C::Servo::Error ==> trying to send invalid servo control message

likely a bug in lib/slide.rb or very outdated dwarf firmware
• I2C::Shaft::Error ==> trying to send invalid rotary valve control msg

likely a bug in lib/shaft.rb
• I2C::SerialPort::Error ==> trying to send invalid dwarf serial port msg

likely a bug in lib/serialport.rb
• I2C::SerialPort::Configuration::Error ==> invalid RS232 configuration

unsupported port baud rate, parity, etc.
• I2C::RS232Port::Error ==> invalid dwarf RS232 serial port config

 port baud rate, parity, stop bits, etc.
• I2C::RS232Port::ReadError ==> dwarf received garbled serial data

parity or framing errors usually indicate wrong baud rate or cabling
• I2C::Thermal::Error ==> trying to send invalid thermal control message

Copyright MBARI 2022

18

Contextual Sensor Errors
• Instrument::ISUS::NoACK ==> ISUS didn't acknowledge cmd receipt

cabling problem?
• Instrument::CTDSample::Error ==> corrupt sample received

likely trying to run a new v2 CTD with old Ruby driver
• Instrument::CTD::NotWhileLoggingError ==> can't sample if logging

CTD should never be put into autonomous logging mode
• Instrument::CTDCore::CalFileMismatch ==> bad seabird cal file

or a valid cal file given the wrong file name
• Instrument::CTD::Warning ==> missing cal file

will still log data, but engineering units are suspect
• Instrument::ReadTimeout ==> instrument did not respond in time

 check cables, batteries, try CTD or ISUS.term
• Instrument::NoDataError ==> no sample available (yet)
• Instrument::Sample::Error ==> generic sample error

Copyright MBARI 2022

19

Email Errors
• Email::SendTimeout ==> email message could not be sent

after numerous retries

• SystemCallError, SocketError, TimeoutError, EOFError
various networking errors that will be retried

• Net::SMTP* ==> Email server is incompatible with ESP client
should not happen if you are mailing with the default configuration

• Net::Proto* ==> Email server is incompatible with ESP client
should not happen if you are mailing with the default configuration

Copyright MBARI 2022

20

Event Trigger Errors
• Trigger::Holdoff::Error ==> specified negative trigger holdoff value

• Trigger::Error ==> inappropriate time to enable triggers
mission busy or not running a mission at all

• Trigger::Restart ==> trigger conditions being reevaluated
(not an error)

• Trigger::Aborted ==> trigger conditions being disarmed
(not an error)

Copyright MBARI 2022

21

Axis Errors
• AxisKernel::Missing ==> some dwarf did not respond to role call

Check I2C and power cabling, verify configure.rb matches hardware

• AxisKernel::Error ==> trying to define the same axis object twice
Likely a problem with the machine’s configure.rb file

• Linear or Rotary Axis::Error ==> seeking unknown position
Could be high level protocol bug or missing info in configure.rb

• Slide::Error ==> not yet homed or other servo error
Likely missing ESP.ready!, mechanical problem or servo out of tune

• Scale::Error ==> invalid Scale object configuration
Lacking 2 numeric positions or have numeric aliases for same position

Copyright MBARI 2022

22

Valve Errors
• Valve::Error ==> configuration error or selecting undefined position

If during configuration, two positions likely have the same name

• Valve::Manifold::Error ==> config error or selecting undefined valve
If during configuration, two valves likely have the same name

• Solenoid::Error ==> low-level configuration error
Likely a low-level solenoid type is defined ambiguously
example: two states sharing the same name

Copyright MBARI 2022

23

Puck, Clamp & Arm Errors
• Puck::Error ==> one of various high-level sanity checks failed

Puck counting logic detected a misplaced puck
Failure to specify type of puck to load or unload
Unspecified Source or Destination tube number
Out of pucks (emptied tube 7)

• Puck::Warning ==> specified puck type does not match that in clamp
you explicitly specify unload an :sh2, but you'd loaded an :sh1 puck
Not fatal, just a warning written to the log

• Clamp::Error ==> clamp open/closed inappropriately or missing puck
Likely someone left a puck in a clamp or forget to put one there

Clamp::VelocityError ==> puck detection algorithm failed
 e.g. Clamp never reached plateau velocity

• Arm::StretchError ==> failure in Arm.stretch!
Arm may be mechanically jammed, unable to reach stops

Copyright MBARI 2022

24

Thermal::
• AmbientChanged ==> ambient temperature changed

Ambient temperature changed by > 2C while heating puck

Copyright MBARI 2022

25

Power Errors
• Busoff ==> power was off when it needed to have been on

e.g. trying to access a microcontroller that is powered off

Copyright MBARI 2022

26

ShallowSampler::
• IntakeClogged ==> Intake pressure will not equalize with exhaust’s

• Clogged ==> Puck filter is clogged
(sampling ends, puck is evacuated, processing begins)

• Error ==> fatal sampling error
• Pressure sensor failure
• Puck leak detected
• Syringe jammed
• Filter clogged while priming
• Clamp not closed on puck
• Failure to specify a filter bubble point

Copyright MBARI 2022

27

Thread::Checkpoint
• Each Checkpoint contains a specific thread's complete call stack

• ESP's Checkpoints are built upon Ruby's standard “Continuations”
• Adds a timestamp and an Exception (with its backtrace)

• Threads can be “resumed” from when the ckpt was stored
• Global $variables are not stored, nor any other thread's variables

• Nor is the physical state of the ESP somehow “stored” !!!
• Log.record “text” creates a checkpoint called “text” as a side effect
• Many errors create checkpoints just before stopping the thread

• Such stopped threads are said to be suspended or “moribund”

• Without a checkpoint, the only recourse is to restart the thread
• With a mission custom coded to pick up from the current state

• With a checkpoint, one must only restore the ESP's state to one
consistent with conditions as of the time the checkpoint was created.
• Often, valves must be correctly set – but it can also be more subtle!

• Checkpoints cannot be used to resurrect a terminated thread
• Other threads to be resumed must be suspended/moribund

Copyright MBARI 2022

28

Managing Checkpoints
• Checkpoint objects are large. Old ones are not usually relevant

• So, for each thread, only the last 20 or so are retained in a queue
• If you want to save one “forever”, just assign it to a variable
-> mainCkPt = MainThread.checkpoint.last

• thread.progress #displays that thread's last few checkpoints
-> MainThread.progress
-> Thread[:sh2].progress

• The most recent is the last line output

• thread.checkpoint returns an array of checkpoints
• thread.checkpoint.last (or .[-1]) is the most recent
• thread.checkpoint[-2] is the 2nd most recent
• thread.checkpoint.first (or .[0]) is the oldest recorded
• thread.checkpoint[1] is the 2nd oldest

• These [index] operations are common to all Ruby arrays

Copyright MBARI 2022

29

Resuming from Checkpoints
• thread.resume is equivalent to thread.checkpoint.last.resume
• thread.resume(-2) == thread.checkpoint[-2].resume
• How would you resume from the oldest recorded checkpoint?

• thread.recover is equivalent to thread.resume

-> trouble #lists all suspended threads and their checkpoints

• Take care to clean up operations that might have altered ESP state
• e.g. Turning off heaters, closing outer valves, etc.

• Not all errors have associated checkpoints
• eg. NameError, SyntaxError, LoadError, etc.
• Such errors are not “recoverable”

• thread.recover will fail if thread has recorded no checkpoints

Copyright MBARI 2022

30

Resuming from Checkpoints (cont'd)

• One can change global variables while threads are suspended
• To reset parameters that caused the error, etc.

• One cannot change local variables.
• The stack embedded in the checkpoint is immutable until resumed

• However, one can patch code!
• But, not for any methods that are on the checkpoint's stack.

• One must resume or recover from a checkpoint before the
method(s) being patched were called.

• Modify the file(s) containing those methods
• Reload the methods with the “define” or “reload” commands:

• define “filename”
• reload method :methodName

Copyright MBARI 2022

31

Resuming after a Slide::Error
• An I2C::Servo::Status snapshot is associated with each Slide::Error

• containing information to help diagnose the cause of the failure
• Was the motor being driven hard at the instant of failure?
• How fast and in what direction was it moving?
• Was the voltage supplied to the dwarf within specification?

• Example simulation of trying to drive Sampler Syringe past its :empty position
-> SS.to 0
-> SS.jog -5000 #try to drive plunger down past empty
Slide::Error in simreal -- Sampler Syringe speedErr at empty
-> ssErr = Thread.exception.last #remember error
-> ssErr.xray #show all we know about the error
-> ssErr.reply.status #show just the error status snapshot
-> SS.to 2 #move SS up so the jog should succeed next time
-> Thread.progress #show all available checkpoints
-> Thread.resume #resume from most recent

• Resuming after Sampler Syringe speedErr at empty at 18:19:51
• SS.jog -5000
• Sampler Syringe at 0.88ml
-> Thread.resume #repeat until we crash again

Copyright MBARI 2022

32

Slide::Error status details
• Linear Slide status may indicate one of the following movement errors:

• :notReady ==> motor encoder has not yet been homed
run ESP.ready! or Axis.home.to :home

• :positionError ==> servo failed to hold position within maxPositionErr
• :speedError ==> motor could reach minSpeed
• :trajectoryError ==> servo could not follow configured velocity profile
• :invalidChannel ==> indicates a configuration error

motor channels must be 0..1
• :invalidGoal ==> seeking invalid raw position
• :aborted ==> another thread sent movement command before arrival
• :overCurrent ==> motor current limit exceeded
• :pressureOutOfBounds ==> pressure limit (high or low) exceeded
• :hitLimit ==> physical travel end limit switch closed

Copyright MBARI 2022

33

Slide::Error configuration details
• Linear Slide status may indicate one of the following errors:

• :invalidConfig ==> generic configuration error
review machine’s configure.rb

• :invalidSpeedConfig ==> maxSpeed==0 or minSpeed<maxSpeed
• :invalidMaxPositionErr ==> maxPositionError <= 0
• :invalidOutPressureLimits ==> Outlet pressure max < min
• :invalidOutPressureLimits ==> Inlet pressure max < min
• :invalidDeltaPressureLimits ==> Delta pressure max < min
• :invalidPWMlimits ==> PWM max < min
• :invalidAcelleration ==> Acceleration==0

• :invalidAbsolutePositionConfig ==> (ESP 3G only)
absolute slide position sensors improperly configured

Copyright MBARI 2022

34

Complications in Resuming

• Restoring ESP's hardware state is straightforward
• Usually it suffices to move actuators (valves, etc.) back to where

they were at the checkpoint's timestamp
• Scan the log backward from the checkpoint's timestamp to

determine the position of all relevant actuators.

• Restoring software state, however, may be tricky!
• What resources did the thread own at the checkpoint's timestamp?
• Are they exactly the some as those the moribund thread owns now?

• Moribund threads keep certain resources
• Arm, FlushPuck: kept to prevent other threads' interfering.

• But heaters are relinquished (shut off)
• To conserve power and avoid damage.

• Note that files being read or written cannot be reread or rewritten.
• Not usually a problem in practice...

Copyright MBARI 2022

35

Resuming Arm&Puck Operations
• Trouble attempting to rearrange pucks for resume from checkpoint

when the suspended thread owns the Arm, Hand, or FlushPuck
• System hangs for a while and reports:

Waiting >20 seconds for thread to relinquish Resource
• One must steal Arm, Hand and/or FlushPuck in order to recover

• Acquire the resources, move pucks, then restore resources’ owners.
• oldOwner = Resource.owner #should be the suspended thread
• Acquire with: Resource.steal!
• Move pucks around as needed to make ready to resume
• Resource.changeOwner oldOwner

• Example when “resource” == Arm
-> oldOwner = Arm.owner #the thread controlling the Arm
-> Arm.steal! #steal control from that moribund thread
… move Arm as needed to prepare to resume from <ckpt> ...
-> Arm.changeOwner oldOwner #restore rightful owner
-> oldOwner.resume <ckpt> #resume from <ckpt>

Copyright MBARI 2022

36

Resuming Heating Operations

• Heaters usually turn off if an error occurs in whatever
thread owns them.

• No problem if checkpoint timestamp is before heating began
• Because the thread will reacquire the heater and restart it

• Otherwise, one must restart the heater for the thread being resumed
• Verify that heater is no longer owned by suspended thread

• e.g. Heater.owner #should be either nil or the suspened thread
• If Heater.owner is nil, it will be necessary to:

• Repeat commands necessary to restore heater temperature.
• It may also be necessary to wait until temperature stabilizes.

• Give control of the heater back to the suspended thread
• Heater.owner = threadBeingResumed

• Resume the thread
• Heater will be one of CH, PH, SPE, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

