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Errors are Unhandled Exceptions
• Great.  So, what is an Unhandled Exception?

• Exceptions are:
• Unusual conditions that obstruct the normal flow of a program
• Handled by special code outside the usual flow

• In modern languages, when a method cannot return a valid value...
• It “throws” (or “raises”) an exception instead!

• 10/0 => ZeroDivisionError
• Math.sqrt()=> ArgumentError: wrong # of arguments(0 for 1)
• Math.sqrt(-1)=> Errno::EDOM -- argument out of domain

• Exceptions propagate up the call stack in search of a “handler”
• Handler code may be very specific or generic

• If no handler is found, the exception is said to be “unhandled”
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Ruby Exception Objects
• Consist of:

•  a text message describing the exception
• A backtrace to locate the point of failure in nested methods
• Subclasses may (and do) associate extra information

• e.g.  The servo status associated with Slide::Error

• Only subclasses of built-in Exception class may be raised/thrown
• One cannot throw/raise a Thread or an Integer, etc.
• Exceptions are otherwise just like any other Ruby object
• Exceptions are always raised on a specific Thread

• Ruby's “rescue” clause encloses all exception handlers
• If no matching rescue clause found, the thread is terminated

• ESP threads always include a top-level Exception handler
• Logs error details just before the failing thread exits
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Exception Class Hierarchy

• ArgumentError.ancestors =>
[ArgumentError, StandardError, Exception, Object, … ] 
 

• NameError.ancestors =>
• [NameError, ScriptError, Exception, Object, … ]

• Slide::Error.ancestors =>
[Slide::Error, LinearAxis::Error, Axis::Error, AxisKernel::Error, 

StandardError, Exception, Object, … ]

• Example of a class that cannot be raised as an Exception:
• Slide.ancestors =>

[Slide, LinearAxis, Axis, … , AxisKernel, Object, …]
• because it does not inherit from the Exception class
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Deriving Ruby Exception Objects
• Define my own error (exception) class and raise it

• class MyErr < StandardError; end
• raise MyErr.new “Your honor, I respectfully object!”

• Define a Slide::Error with associated (servo status) reply and axis:

class Slide < LinearAxis
  class Error < LinearAxis::Error
    def initialize text, axis, reply=nil
      @reply = reply
      super text, axis
    end
    attr_reader :reply    
  end

• So, in addition to the base Exception's backtrace and message
Slide::Error exceptions store servo axis and status reply
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Backtraces  (1 of 2)
• Answers the question:  Where did the error occur?
• Example:  

ESPbruce:002:0> CC.to :spoon   #there is no spoon :-)
Axis::Error in quick -- Unknown Collection Clamp position: spoon

ESPmack:003:0> backtrace
/home/brent/esp2/lib/axis.rb:513:in `baseRaw'
/home/brent/esp2/lib/axis.rb:297:in `raw'
/home/brent/esp2/lib/axismap.rb:175:in `fetch'
/home/brent/esp2/lib/axismap.rb:163:in `fetch'
/home/brent/esp2/lib/axis.rb:281:in `fetch'
/home/brent/esp2/lib/axis.rb:292:in `raw'
/home/brent/esp2/lib/axis.rb:553:in `raw'
/home/brent/esp2/lib/slide.rb:325:in `toRawGoal'
/home/brent/esp2/lib/slide.rb:333:in `seek'
/home/brent/esp2/lib/slide.rb:382:in `to'
(ESP):2
/opt/mbari/lib/ruby/1.8/irb/workspace.rb:52:in `irb_binding'
/opt/mbari/lib/ruby/1.8/irb/workspace.rb:52

=> #<Axis::Error: Unknown Collection Clamp position: spoon>

  Use your text editor to seek to line numbers in each file referenced 
In vi, simply enter a line number at the : prompt
In nedit, type control-L to type line number into a dialog box
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Backtraces  (2 or 2)
• One may also list the offending Ruby code within the ESP app

• First, let’s remember the most recent error
-> err = Thread.current.exception.last
-> list err #list the error line + a few following
-> list err, 20, -10 #20 lines starting 10 before

• To access backtrace levels above the lowest
-> err[-4] #the 4th call level from the topmost
/home/brent/esp2/lib/slide.rb:382:in `to'

– equivalent to writing -> err.backtrace[-4]

-> list err[-4], 5, -2
def moveTo goal, tmpCfg=nil, maxDuration=@maxDuration
#like seek, but allows for a servo configuration for just this move
  return seek goal, maxDuration if tmpCfg.nil? or tmpCfg.equal? @config
  inConfiguration(tmpCfg) {seek goal, maxDuration}
end
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Rescuing Ruby Exceptions
• Exception handlers are just blocks of code within a rescue clause

def safeDivide num, den
  num/den
rescue ZeroDivisionError
  prompt "Divide by zero!? "
rescue StandardError => err
  Log.recordException err  #does not raise beyond here

:silly  #return :silly on other errors
end

• The exception's derived class determines how it is handled
• Not its message text

• Error text messages just attempt to explain the error to users
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ESP Top-Level Exception Handling
• Each ESP thread has an associated queue of unhandled exceptions

• Thread[name].exception => list of most recent errors
• Only the most recent 20 or so unhandled exceptions are preserved
• The last is the most recent, the first is the oldest
• Thread[name].exception displays all thread's recent errors 

• The backtrace method with no arguments method displays
Thread.current.exception.last.backtrace

• backtrace :name  displays
Thread[:name].exception.last.backtrace

• backtrace thread  displays
thread.exception.last.backtrace

• e.g.  backtrace MainThread == backtrace

• To save the 2nd to last error (prevent losing it off the queue)
myErr = thread.exception[-2]

• Later use:  backtrace myErr to display exception's backtrace
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Ruby Script Errors
• NameError ==>  specified method or variable is not defined

• SyntaxError  ==>  grammatical error
puts "foo" If 3>2   #If should be lowercase if

• LoadError ==> cannot process specified Ruby script file
execute “missingFile”

• The above errors will always require that Ruby script be edited.
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Generic Runtime Ruby Errors
• ArgumentError  ==>  number and/or class of objects being passed

into a method are incompatible with its definition

• TypeError ==> method does not handle the type of object passed in

• Interrupt ==> Unix INTerrupt signal sent to ESP Ruby process

• SignalException ==> Another Unix signal sent to ESP process

• IRB::Abort ==> Control-C pressed on ESP’s server terminal

• UserAbort ==> Control-C pressed on espclient terminal

• RuntimeError ==> generic error (text message will describe it)
• raise “something bad's happened”  #raises a RuntimeError

• ZeroDivisionError ==> e.x. 10/0
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Internal ESP logging errors

• Log::Locked ==> can’t start 2nd ESP app in the same ESP::Mode

Log errors below  indicate serious bugs or configuration problems

• Log::CannotDump  ==>  attempt to log object containing files or procs
Certain objects cannot be converted to a byte stream

• Log::Error ==> other internal error

• Log::Reader::Error ==> invalid log file format encountered by dumplog
• May be caused by read log from different type of ESP

• i.e.  trying to dump a standard core's log from an MFB
• Or trying to dump MFB equipped ESP's log from one lacking MFB
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Scheduling Errors
• Schedule::EventInPast  ==>  time is in the past

trying to schedule an operation (or delay) before current time

• Schedule::Stop ==> scheduler has been stopped by error or user
produced as ESP app terminates (no recovery possible)   

• Delay::Error ==> invalid duration syntax
e.g.  delay “1 fortnight”

• Delay::TooLate ==> phase start time in past by > Delay::MaxLate
Did the previous phase run long?

• Or, phase start time in future > Delay::MaxWait

• Delay::Late ==> phase start time past by < Delay::MaxLate
Warning only.  Did the previous phase run long?
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Thread Errors
• Thread::Aborted  ==>  another thread requested this one be aborted

t.abort   #raises Thread::Abort in thread t

• Thread::ParentDied ==> the thread that spawned us had a fatal error
Thread::ChildDied ==> a thread this one spawned had a fatal error

Child threads may “orphan” themselves to avoid these errors

• Thread::Checkpoint::Resume ==> users should never see this...
Exception raised in a moribund thread to resume it
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Common System (Errno::) Errors

• ECONNREFUSED  ==>  host refused requested network service
• may indicate that the host is still booting up

• EDOM ==> invalid {numeric} domain {e.g. sqrt(-1)}

• ENOTTY ==> data file used where an interactive terminal required

• EPIPE ==> connection between processing broken
• a pipe error often indicates that a network connection timed out

• EPERM ==> file permission error
• e.g. user has no permission to access or write to file in question
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I2C Bus Errors
• I2C::DuplicateAddress::Error  ==>  two dwarves have same address

check dwaves' dip switches very carefully
• I2C::LAN::NoGateway::Error ==> the I2C network lacks its gateway

configuration error – not generally recoverable
• I2C::Parser::Error ==> response sent by dwarf improperly formatted

• could be caused by very outdated firmware or electrical noise
• I2C::Request::Timeout ==> expected response not received in time

usually indicates a motor or sensor is failing – not a network failure
• I2C::UnexpectedReply ==> received unexpected dwarf response

May happen when rapidly logging data.  Unexpected replies ignored.
• I2C::NodeOffline ==> dwarf is not responding to its address

This is a network problem
• I2C::MsgErr ==> host is trying to send improperly formatted message

Can occur in simulation of “unmodeled” operations
• Tag::Error ==> Message tags are inconsistent

Internal ESP Error
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I2C Message Processing Errors
• I2C::Solenoid::Error  ==>  trying to send invalid solenoid control msg

likely a bug in lib/solenoid.rb
• I2C::Servo::Error ==> trying to send invalid servo control message

likely a bug in lib/slide.rb or very outdated dwarf firmware
• I2C::Shaft::Error ==> trying to send invalid rotary valve control msg

likely a bug in lib/shaft.rb
• I2C::SerialPort::Error ==> trying to send invalid dwarf serial port msg

likely a bug in lib/serialport.rb
• I2C::SerialPort::Configuration::Error ==> invalid RS232 configuration

unsupported port baud rate, parity, etc.
• I2C::RS232Port::Error ==> invalid dwarf RS232 serial port config

 port baud rate, parity, stop bits, etc.
• I2C::RS232Port::ReadError ==> dwarf received garbled serial data

parity or framing errors usually indicate wrong baud rate or cabling
• I2C::Thermal::Error ==> trying to send invalid thermal control message
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Contextual Sensor Errors
• Instrument::ISUS::NoACK  ==>  ISUS didn't acknowledge cmd receipt

cabling problem?
• Instrument::CTDSample::Error ==> corrupt sample received

likely trying to run a new v2 CTD with old Ruby driver
• Instrument::CTD::NotWhileLoggingError ==> can't sample if logging

CTD should never be put into autonomous logging mode
• Instrument::CTDCore::CalFileMismatch ==> bad seabird cal file

or a valid cal file given the wrong file name
• Instrument::CTD::Warning ==> missing cal file

will still log data, but engineering units are suspect
• Instrument::ReadTimeout ==> instrument did not respond in time

 check cables, batteries, try CTD or ISUS.term
• Instrument::NoDataError ==> no sample available (yet)
• Instrument::Sample::Error ==> generic sample error
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Email Errors
• Email::SendTimeout  ==>  email message could not be sent

after numerous retries

• SystemCallError, SocketError, TimeoutError, EOFError
various networking errors that will be retried

• Net::SMTP*  ==>  Email server is incompatible with ESP client
should not happen if you are mailing with the default configuration

• Net::Proto*  ==>  Email server is incompatible with ESP client
should not happen if you are mailing with the default configuration
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Event Trigger Errors
• Trigger::Holdoff::Error  ==>  specified negative trigger holdoff value

• Trigger::Error ==> inappropriate time to enable triggers
mission busy or not running a mission at all

• Trigger::Restart ==> trigger conditions being reevaluated
(not an error)

• Trigger::Aborted ==> trigger conditions being disarmed
(not an error)
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Axis Errors
• AxisKernel::Missing  ==>  some dwarf did not respond to role call

Check I2C and power cabling, verify configure.rb matches hardware

• AxisKernel::Error ==> trying to define the same axis object twice
Likely a problem with the machine’s configure.rb file

• Linear or Rotary Axis::Error ==> seeking unknown position
Could be high level protocol bug or missing info in configure.rb

• Slide::Error ==> not yet homed or other servo error
Likely missing ESP.ready!, mechanical problem or servo out of tune

• Scale::Error ==> invalid Scale object configuration
Lacking 2 numeric positions or have numeric aliases for same position



 
Copyright MBARI 2022

 
22

Valve Errors
• Valve::Error  ==>  configuration error or selecting undefined position

If during configuration, two positions likely have the same name

• Valve::Manifold::Error ==> config error or selecting undefined valve
If during configuration, two valves likely have the same name

• Solenoid::Error ==> low-level configuration error
Likely a low-level solenoid type is defined ambiguously
example:  two states sharing the same name
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Puck, Clamp & Arm Errors
• Puck::Error  ==>  one of various high-level sanity checks failed

Puck counting logic detected a misplaced puck
Failure to specify type of puck to load or unload
Unspecified Source or Destination tube number
Out of pucks  (emptied tube 7)

• Puck::Warning ==> specified puck type does not match that in clamp
you explicitly specify unload an :sh2, but you'd loaded an :sh1 puck
Not fatal, just a warning written to the log

• Clamp::Error ==> clamp open/closed inappropriately or missing puck
Likely someone left a puck in a clamp or forget to put one there

Clamp::VelocityError ==>  puck detection algorithm failed
 e.g.  Clamp never reached plateau velocity

• Arm::StretchError ==> failure in Arm.stretch!
Arm may be mechanically jammed, unable to reach stops
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Thermal::
• AmbientChanged  ==>  ambient temperature changed

Ambient temperature changed by > 2C while heating puck 
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Power Errors
• Busoff  ==>  power was off when it needed to have been on

e.g. trying to access a microcontroller that is powered off 
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ShallowSampler::
• IntakeClogged  ==>  Intake pressure will not equalize with exhaust’s

• Clogged ==> Puck filter is clogged
(sampling ends, puck is evacuated, processing begins)

• Error ==> fatal sampling error
• Pressure sensor failure
• Puck leak detected
• Syringe jammed
• Filter clogged while priming
• Clamp not closed on puck
• Failure to specify a filter bubble point
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Thread::Checkpoint
• Each Checkpoint contains a specific thread's complete call stack

• ESP's Checkpoints are built upon Ruby's standard “Continuations”
• Adds a timestamp and an Exception (with its backtrace)

• Threads can be “resumed” from when the ckpt was stored
• Global $variables are not stored, nor any other thread's variables

• Nor is the physical state of the ESP somehow “stored” !!!
• Log.record “text” creates a checkpoint called “text” as a side effect
• Many errors create checkpoints just before stopping the thread

• Such stopped threads are said to be suspended or “moribund”

• Without a checkpoint, the only recourse is to restart the thread
• With a mission custom coded to pick up from the current state

• With a checkpoint, one must only restore the ESP's state to one 
consistent with conditions as of the time the checkpoint was created.
• Often, valves must be correctly set – but it can also be more subtle!

• Checkpoints cannot be used to resurrect a terminated thread
• Other threads to be resumed must be suspended/moribund
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Managing Checkpoints
• Checkpoint objects are large.  Old ones are not usually relevant

• So, for each thread, only the last 20 or so are retained in a queue
• If you want to save one “forever”, just assign it to a variable
-> mainCkPt = MainThread.checkpoint.last

• thread.progress   #displays that thread's last few checkpoints
-> MainThread.progress
-> Thread[:sh2].progress

• The most recent is the last line output

• thread.checkpoint returns an array of checkpoints
• thread.checkpoint.last (or .[-1]) is the most recent
• thread.checkpoint[-2] is the 2nd most recent
• thread.checkpoint.first (or .[0]) is the oldest recorded
• thread.checkpoint[1] is the 2nd oldest

• These [index] operations are common to all Ruby arrays
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Resuming from Checkpoints
• thread.resume is equivalent to thread.checkpoint.last.resume
• thread.resume(-2)  ==  thread.checkpoint[-2].resume
• How would you resume from the oldest recorded checkpoint?

• thread.recover is equivalent to thread.resume

-> trouble #lists all suspended threads and their checkpoints

• Take care to clean up operations that might have altered ESP state
• e.g.  Turning off heaters, closing outer valves, etc.

• Not all errors have associated checkpoints
• eg.  NameError, SyntaxError, LoadError, etc.
• Such errors are not “recoverable”

• thread.recover will fail if thread has recorded no checkpoints 
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Resuming from Checkpoints (cont'd)

• One can change global variables while threads are suspended
• To reset parameters that caused the error, etc.

• One cannot change local variables.
• The stack embedded in the checkpoint is immutable until resumed

• However, one can patch code!
• But, not for any methods that are on the checkpoint's stack.

• One must resume or recover from a checkpoint before the 
method(s) being patched were called.

• Modify the file(s) containing those methods
• Reload the methods with the “define” or “reload” commands:

• define “filename”
• reload  method :methodName
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Resuming after a Slide::Error
• An I2C::Servo::Status snapshot is associated with each Slide::Error

• containing information to help diagnose the cause of the failure
• Was the motor being driven hard at the instant of failure?
• How fast and in what direction was it moving?
• Was the voltage supplied to the dwarf within specification?

• Example simulation of trying to drive Sampler Syringe past its :empty position
-> SS.to 0
-> SS.jog -5000 #try to drive plunger down past empty
Slide::Error in simreal -- Sampler Syringe speedErr at empty
-> ssErr = Thread.exception.last  #remember error
-> ssErr.xray #show all we know about the error
-> ssErr.reply.status  #show just the error status snapshot
-> SS.to 2  #move SS up so the jog should succeed next time
-> Thread.progress   #show all available checkpoints
-> Thread.resume  #resume from most recent

• Resuming after Sampler Syringe speedErr at empty at 18:19:51
• SS.jog -5000
• Sampler Syringe at 0.88ml
-> Thread.resume  #repeat until we crash again
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Slide::Error status details
• Linear Slide status may indicate one of the following movement errors:

• :notReady  ==>  motor encoder has not yet been homed
run ESP.ready! or Axis.home.to :home

• :positionError ==> servo failed to hold position within maxPositionErr
• :speedError ==> motor could reach minSpeed
• :trajectoryError ==> servo could not follow configured velocity profile
• :invalidChannel ==> indicates a configuration error

motor channels must be 0..1
• :invalidGoal ==> seeking invalid raw position
• :aborted ==> another thread sent movement command before arrival
• :overCurrent ==> motor current limit exceeded
• :pressureOutOfBounds ==> pressure limit (high or low) exceeded
• :hitLimit ==> physical travel end limit switch closed
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Slide::Error configuration details
• Linear Slide status may indicate one of the following errors:

• :invalidConfig  ==>  generic configuration error
review machine’s configure.rb

• :invalidSpeedConfig ==> maxSpeed==0 or minSpeed<maxSpeed
• :invalidMaxPositionErr ==> maxPositionError <= 0
• :invalidOutPressureLimits ==> Outlet pressure max < min
• :invalidOutPressureLimits ==> Inlet pressure max < min
• :invalidDeltaPressureLimits ==> Delta pressure max < min
• :invalidPWMlimits ==> PWM max < min
• :invalidAcelleration ==> Acceleration==0

• :invalidAbsolutePositionConfig ==>  (ESP 3G only)
absolute slide position sensors improperly configured 
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Complications in Resuming

• Restoring ESP's hardware state is straightforward 
• Usually it suffices to move actuators (valves, etc.) back to where

they were at the checkpoint's timestamp
• Scan the log backward from the checkpoint's timestamp to 

determine the position of all relevant actuators.

• Restoring software state, however, may be tricky!
• What resources did the thread own at the checkpoint's timestamp?
• Are they exactly the some as those the moribund thread owns now?

• Moribund threads keep certain resources
• Arm, FlushPuck:  kept to prevent other threads' interfering.

• But heaters are relinquished (shut off)
• To conserve power and avoid damage.

• Note that files being read or written cannot be reread or rewritten.
• Not usually a problem in practice...
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Resuming Arm&Puck Operations
• Trouble attempting to rearrange pucks for resume from checkpoint

when the suspended thread owns the Arm, Hand, or FlushPuck
• System hangs for a while and reports:

Waiting >20 seconds for thread to relinquish Resource
• One must steal Arm, Hand and/or FlushPuck in order to recover

• Acquire the resources, move pucks, then restore resources’ owners.
• oldOwner = Resource.owner  #should be the suspended thread
• Acquire with:  Resource.steal!
• Move pucks around as needed to make ready to resume
• Resource.changeOwner oldOwner

• Example when “resource” == Arm
-> oldOwner = Arm.owner  #the thread controlling the Arm
-> Arm.steal!  #steal control from that moribund thread
… move Arm as needed to prepare to resume from <ckpt> ...
-> Arm.changeOwner oldOwner  #restore rightful owner
-> oldOwner.resume <ckpt>  #resume from <ckpt>
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Resuming Heating Operations

• Heaters usually turn off if an error occurs in whatever 
thread owns them.

• No problem if checkpoint timestamp is before heating began
• Because the thread will reacquire the heater and restart it

• Otherwise, one must restart the heater for the thread being resumed
• Verify that heater is no longer owned by suspended thread

• e.g.  Heater.owner  #should be either nil or the suspened thread
• If Heater.owner is nil, it will be necessary to:

• Repeat commands necessary to restore heater temperature.
• It may also be necessary to wait until temperature stabilizes.

• Give control of the heater back to the suspended thread
• Heater.owner = threadBeingResumed

• Resume the thread
• Heater will be one of CH, PH, SPE, etc.
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