

Copyright MBARI 2022

1

The ESP Server
Main Application

5/17/22 Brent Roman brent@mbari.org

Copyright MBARI 2022

2

ESP Server Startup
● Determines what Ruby code files to read

● from ESP environment variables
● Reads state files to recall any machine state

that cannot be directly sensed
– e.g. puck placement

● Establishes comms with ESP gateway
● Does NOT power on other microcontrollers

● until ESP.configure
● Does NOT change position of any actuators

● until ESP.ready!

Copyright MBARI 2022

3

ESP Server
● Start with command:

esp # interactive mode (attached to terminal)

esp mission #run mission script (attached)

start esp mission #run mission detached

start esp #wait for espclient(s) to connect
– Only “start esp …” produces the mode.out log file

● ESP env variables must be initialized beforehand
● per “Setting up the ESP Environment” slide

● Beware that network failures will cause crashes
● if esp app is attached to a controlling terminal
● use “start esp …” to avoid this!

Copyright MBARI 2022

4

ESP Operating Modes
● Determine how time advances

● Real-Time vs Simulated Time
● Can’t access hardware in simulated time

● Determine what gets displayed on terminal
● quiet or quick modes display little
● normal modes display most useful events
● debug modes display everything

● The binary log stores all events
● regardless of operating mode!

Copyright MBARI 2022

5

Real-Time Operating Modes
• ESPmode=real

– Normal operation in real-time with real hardware

– Default mode when running on ESP hardware

• ESPmode=debug

– copious output displayed

• ESPmode=brief

– less then usual output displayed

• ESPmode=quiet

– only errors displayed

• ESPmode=nolog

– nothing displayed

• ESPmode=simreal

– simulated hardware with normal output

• ESPmode=simdebug

– simulated hardware with copious output

Copyright MBARI 2022

6

Simulated Time Operating Modes
• ESPmode=simfast

– accelerated time, normal output

• ESPmode=simfaster

– simfast for “long” mission mode

• ESPmode=simfastdebug

– simfast with copious output

• ESPmode=quick

– simfast with less than usual output

– best for simulating missions before deployment

• ESPmode=quicker

– quick mode for “long” missions

• ESPmode=simrapid

– special mode for 3G ESP

– accelerate sampling simulation

Copyright MBARI 2022 7

More About Operating Modes

• All modes are defined as Ruby files in
the mode subdirectory

– One may easily create their own custom
modes.

– Mode definition files are named:

• $ESPhome/mode/mode_name.rb

Copyright MBARI 2022

8

Required
ESP Environment Variables

● ESPmode=real #operating mode
● ESPhome=/home/esp/esp2 #top dir of ESP app
● ESPpath=/home/esp/esp2/mission:.

#where to search for ESP mission scripts

● ESPconfigPath= #path to config files
● ESPlog=/var/log/esp #where to write files
● ESPname=bruce #name of ESP machine
● RUBYLIB=/home/esp/esp2/lib:/home/esp/esp2/utils

● PATH=...:/opt/mbari/bin:$ESPhome/bin

Copyright MBARI 2022

9

ESPenv script
● Sets required ESP environment variables

● Must be ‘sourced’ [e.g. run with dot, as “. ESPenv”]
● because it modifies the current shell’s environment!
● Run automatically on login as part of shell startup

● All script’s parameters are optional
1st parameter is the platform type (eg. [shallow], 1km)

2nd parameter is unit name (eg. gigi, neo, etc.) = ESPname

The default for name derived from the system's hostname

3rd parameter is the ESPhome directory [~/esp2] = ESPhome

4th parameter is ESPpath

defaults to [$ESPhome/mission:.]

5th parameter is ESPconfigPath

defaults to

#[$ESPhome/type/$type/$unitName:$ESPhome/type/$type:
$ESPhome/type:$ESPhome/admin]

Copyright MBARI 2022

10

Optional
ESP Environment Variables

● TZ=US/Pacific #overrides time zone
● ESPcheckpoints=0 #disables Thread.resume
● ESPcmdPort=9999 #listen on TCP espclient port
● ESPclient=host:8888#connect to host on port
● ESPaxisPort=3333 #listen on axis display port
● ESPforget=true #do not restore puck state
● ESPmodules=/home/esp/esp2/lib/analytic

 #path to drivers for analytical modules

Copyright MBARI 2022 11

Why Simulate?
• Simulate missions before deployment to catch

– Syntax errors

– Missing, wrong, or extra parameters

– Configuration errors

• Trying to pull a reagent that is not configured/defined

• Insufficient volumes of reagent(s)

• Waste container overflow

– Scheduling errors

• Not leaving enough time between mission phases

• Scheduling recovery before last phase completes

• Simulate adaptive sampling triggers

– With recorded or generated CTD data

– Observe when sampling occurs

• Adjust trigger conditions as needed

• Run simulations on ESP itself, or on a Linux desktop/laptop

Copyright MBARI 2022

12

Setting up to Simulate
● Real ESP’s automatically configure their env vars

● Laptops and Desktops simulating ESPs do not
● Must set required env vars before simulating

● or using ‘dumplog’ to display the binary log
● Typically all that is needed to simulate 2G ESPs is:

$. ESPenv shallow ESPname

● where ESPname = name of the ESP to simulate
● example of setting up to simulate ESPchris:
. ESPenv shallow chris

ESPmode=simfast #for simulated time

Copyright MBARI 2022

13

Simulated Time
● starts at 1/1/1970 UTC [i.e. the Unix Epoch]
● does not advance when idle
● advances instantly to any future time

-> delayUntil Time.now #advances to now
● is restored when ESPserver restarts
● cannot reverse

● to reset time to 1/1/1970, use:

$ forgetESPstate #before starting esp
● -> delay 600 #advances 10min instantly
● -> sleep 600 #takes 10min, does not advance

● (do not use sleep)

Copyright MBARI 2022

14

Time.now vs Thread.time
● Time.now = the current clock-on-the-wall time
● Thread.time = when all threads were last idle

● In real-time modes
– Thread.time always slightly before Time.now
– Thread.time advances when ESP idle

● In simulated time modes
– Thread.time has no relation to Time.now
– Thread.time advances only when ESP delays

Copyright MBARI 2022

15

Multithreading and Thread.time
● Computation delays do not advance Thread.time
● All threads must advance Thread.time in lock step

● Thread.time advances only when all threads are idle
● otherwise, it will be inconsistent between them

● These rules are required to ensure that:
● processor speed does not impact results
● simulated time results are the same as real-time

● However, threads can “unsync” from Thread.time
● to allow it to advance while they remain “busy”
● Useful for I/O

– and simulating with multiple espclients

Copyright MBARI 2022

16

Testing ESP Operating Mode
● ESP::Mode = current operating mode ($ESPmode)
● ESP::Home = ESP install directory ($ESPhome)
● ESP::ConfigPath = configuration directories

($ESPconfig)
● ESP::LogDir = log directory ($ESPlog)
● ESP::LogFn = file path to binary log
● ESP::MinVoltage = minimum operating voltage

● ESP.simulation? true if this is a simulation
● Thread.realtime? true ESP running in real-time

Copyright MBARI 2022 17

Simulation Procedure
• ESPmode must be set before starting the ESP software

• Change the mode for all subsequent runs with:
ESPmode=newMode

• Restore normal mode for all subsequent runs
with:

ESPmode=real

• Change mode w/o affecting subsequent runs
with:

ESPmode=newMode esp mission

• Omit mission to simulate interactively

• Most typical simulation command:

ESPmode=quick esp myNewMission

Copyright MBARI 2022 18

Simulation Features and Limits
• Protocols are simulated in full detail

– Every movement of the physical hardware is simulated

– Every I2C message is simulated down to the byte level

– Puck handling assumes that there are no stack height errors

– Will not detect mechanical interference between axes

• E.g. attempts to move the carousel with the Elevator up will succeed in sim

• But, attempts to move the Elevator past its physical limits will fail in sim

– One should test new protocols by simulating them first, before wasting reagents.

• Does simulate CTD

– But not ISUS

• Tracks consumption of Time
– Does not simulate energy consumption

– Will track fluid and reagent use on 2G ESP

• if script begins with: require ‘fluid’

• Simulation of whole missions is CPU intensive

– Allow 90 minutes to simulate a full mission on the slow ESP processor

– The same sim would take < 30 seconds on a fast server.

– Figure on it taking 90 seconds for the typical laptop

Copyright MBARI 2022 19

Declaring Puck Stack Heights
• Puck stack height cannot be measured in simulation

– Puck load must be prescribed in simulations

• Every new mission should define the number of pucks
expected to be loaded in each tube!

– Optional in “real” mode, but...

• Isn't it better to fail early, if puck load is wrong?

• Excerpt of mission with 6 pucks in tubes 2, 3 and 4:

pucks 2=>6, 3=>6, 4=>6 # see next slides

mission startTube: 2, until: “9AM 4/10/15”
 do

<mission phases>

end

• Fails immediately if tube 2 did not start with exactly six pucks

Copyright MBARI 2022 20

Declaring Puck Stack Heights

• Commands to set and query the expected stack height:

– clear! tubeList=1..7

• Clears each specified tube's stack height

– fill! numPucks=22, tubeList=2..6

• Puts the specified number of pucks in each listed
tube

– pucks tubeHash={}

• Puts the specified number of pucks in specified
tubes: eg. pucks 3=>14, 7=>8

• If tubeHash omitted, just displays the # of pucks in
each tube

Copyright MBARI 2022 21

Stack Height Setting Examples
-> fill! if ESP.simulation?
– Fills all tubes except #1 (for typical fully loaded carousel mission)

– But, only if running as a simulation

-> fill!; clear! 2, 4..7

– Ends up with tube 3 containing 22 pucks, others empty

-> fill! 9

– Fills all tubes except #1 with 9 pucks (empties others)

-> fill! 9, 1, 3..5, 7

– Fills tube 1, 3, 4, 5 and 7 with 9 pucks (empties others)

-> pucks 2=>22, 6=>18

– Fills tube #2 with 22 pucks, tube #6 with only 18

-> pucks

– Changes nothing

– Just returns the hash of pucks in tubes.

Copyright MBARI 2022

22

Running Multiple ESPservers
● At most one ESP server may be run

● in any mode that accesses real actuators
Errno::EBUSY in MAIN -- Device or resource
busy - /dev/I2Cgate -- Missing core Gateway!

● in the same simulation ESPmode
Log::Locked in trapHandler -- Another
process is already writing to logFile

● One may run a simulation along side another in
different ESPmode.
● or while the ESP is running in ESPmode=real

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

