
 
Copyright MBARI 2022

 

1

Physical State

5/24/22 Brent Roman   brent@mbari.org



 
Copyright MBARI 2022

 

2

ESP Physical State
● Canister environmental sensors
● Power Switches
● All moving actuators:

– Rotary Valves
– Solenoid Valves
– Syringes
– Clamps
– Carousel
– Elevator
– Elbow
– Gripper

● Puck Heaters



 
Copyright MBARI 2022

 

3

Gateway Canister State
● Quietly logged once every

● 10min for 2G,  2min for 3G
-> Gate.queryCan   #or simply -> can

Can@22:40:11, 24.2C, 67% humidity, 14.2psia, 13.684V, 0.256A, 
187.834Ah, 3.50W

● Ah is only available with newest firmware

-> Gate.queryCan takes an immediate reading
– can is an alias for Gate.queryCan

-> Gate.can uses the most recent reading

-> Gate.canPollInterval=30.seconds

-> Gate.canPollInterval=0 #no polling



 
Copyright MBARI 2022

 

4

Canister State details
-> Can.unit #all available can sensors

{avgCurrent: {format: "%.3fA avg"},

 batteryUsed: {format: "%.3fAh"},

 current: {format: "%.3fA"},

 humidity: {format: "%d%% humidity"},

 pressure: {format: "%.1fpsia"},

 temperature: {format: "%.1fC"},

 voltage: {format: "%.3fV"},

 waterAlarm: {format: "%d%% Wet!",

 threshold: 1.5}}

-> Can.missionDuration  #duration power has been on

5 weeks, 3 days, 10:19:32.40625

-> c=can; (c.voltage*c.batteryUsed).round  #~Wh used



 
Copyright MBARI 2022

 

5

Gateway Power Switches
-> Power #state of all power switches

{analytic1: false,

 analytic2: false,

 analytic3: false,

 camera: false,

 core: false,

 raw: false,

 sampler: false}

-> Power.sampler :on  #turn sampler on

-> Power.on :sampler  #turn sampler on

-> Power.off :sampler, :camera  #turn off sampler and camera

-> Power.offSince[:sampler]  #when sampler was turned off or nil

-> Power.onSince[:core]    #when core was powered on or nil

-> Power.sampler  #True if sampler is on



 
Copyright MBARI 2022

 

6

Linear Actuator Class Hierarchy
• Slide => Lowest level at which end-users interface with hardware

• Think of a slide trombone with named positions for arbitrary “notes”
• Forearm, Elbow, Carousel

• Clamp => inherits from Slide
• Adds closed?, open?, and closeAndVerifyPuckPresence

• Scale => inherits from Slide
• Adds a linear, numeric scale (in standard units) to Slides 
• Elevator  #unit = puck height

• Syringe => inherits from Scale
• adds pull, push, fill, empty volume methods
• Collection, Processing, Sampler, Analytical syringes

• Thermal => inherits from Scale
• replaces motor with a heater

• Errors come from microcontrollers, which are all managed by Slide class
• This is why Linear Actuators report most errors as “Slide::Error”



 
Copyright MBARI 2022

 

7

Other Actuator Classes
● Shaft is a rotary actuator

● all of which just happen to spin a rotary valves
● Gripper is a two state actuator

● with binary position sensing
● May control a robotic hand or a motorized valve

● Solenoid is a two or three state solenoid actuator
● without position feedback sensing

● Valve is a Solenoid used to control fluid flow
● Valve::Manifold is an array of Valve

● sharing a common fluid path



 
Copyright MBARI 2022

 

8

Using AxisMaps
• An AxisMap maps all raw counts to corresponding position names
• They are typically accessed via their associated Axis or Positions:

• axis.legend => the AxisMap as a Hash
• axis.list => list of all names without raw positions
• axis.labels => list of only the position labels – omitting aliases
• axis.maxPosition => position mapped to greatest raw counts
• axis.minPosition => position mapped to least raw counts
• axis.advance => move to position with next higher raw counts
• axis.retard => move to position with next lower raw counts
• axis.at?(position) => true if axis is at (or near) specified position
• axis.near?(position) => true if axis is at or near position
• axis.between?(pos1,pos2) => true if axis is (nearly) between
• axis.rawId(rawCount) => position nearest rawCount (reverse map)
• position.advance(detents) => position with next higher raw counts
• position.retard(detents) => position with next lower raw counts
• position.near?(position) => true if positions very near each other



 
Copyright MBARI 2022

 

9

● Hardware counts <==> names and aliases
-> Forearm.legend

{-12793 => 3, -12782 => 5, -12726 => 7,-12711 => 4,

 -12706 => 2, -12699 => 1, -12678 => 6,

 -12501 => [CC, :collection, Collection],

 -12418 => [PC, :processing, Processing],

 -12342 => [:garage, FlushPuck, FlushPuck::Garage],

 0 => :home,

 2800 => ["retracted", :retract, :clear]}

● Defined in configure.rb as:

Forearm.detents 0=>:home, 2800=>"retracted",

    -12501=>CC, -12418=>PC, -12342=>:garage,

    -12699=>1, -12706=>2, -12793=>3, -12711=>4, -12782=>5,

    -12678=>6, -12726=>7

Axis Map Example



 
Copyright MBARI 2022

 

10

Solenoid Valves
● Solenoid valve state is either open, closed, or unknown
● Intake and Exhaust external solenoid valves

● Unipoler, normally closed
● Draw a lot of power while opened

● Solenoid valves in Manifolds
● Bipoler, latching
● Latching Valve state is initially unknown
● Draw power in short pulses when changing state

-> Intake.to :open #holds Intake open

-> Intake.open #ditto

-> Solenoid #shows Intake and Exhaust state



 
Copyright MBARI 2022

 

11

Solenoid Valves Plumbing
● Each ESP 2G Dwarf microcontroller

● drives 8 solenoids numbered 0..7
● To show how a solenoid is connected:

-> Intake.wiring  #how is Intake wired?

sampler[6] #it’s 2nd to last on sampler dwarf



 
Copyright MBARI 2022

 

12

Valve::Manifold
● Each composed of a series of Solenoid::Valve plus an endName

● Valve::Manifold state = either the name
– of its first opened Solenoid::Valve
– or its endName, if no Solenoid::Valve is open

● Individual valves in the manifold can be accessed

-> CSR.series[0].open  #open 1st CSR valve

-> CSR.wiring  #shows wiring connections

[:lysis <=> collection[0],   #these need not be in order

 :diluent <=> collection[1],

 :RNAlater <=> collection[2],

 :mfbkill <=> collection[3],

 :kill <=> collection[4],

 :flush <=> collection[5]]



 
Copyright MBARI 2022

 

13

Valve::Manifold Configuration
● Collection Series configuration is often machine specific

● Example for ESPwaldo, defined in its configure.rb file:

:CSR.denotes Valve::Manifold :Collection, [

   Valve.reagent(:lysis, CollectionValves,0),

   Valve.reagent(:diluent, CollectionValves,1),

   Valve.reagent([:RNAlater, :rnal], CollectionValves,2),

   Valve.reagent(:mfbkill, CollectionValves,3),

   Valve.reagent(:kill, CollectionValves,4),

   Valve.reagent(:flush, CollectionValves,5)  ], :air

● :air is the manifold’s “endName” representing

● its state when all its series valves are closed
● :rnal is an alias for :RNAlater



 
Copyright MBARI 2022

 

14

aliases and labels
● Each named position has exactly one label

● in addition, it may have any number of aliases
● A position is output by its label

● but may be input by its label or any corresponding alias
-> CSR.aliases

{rnal: :RNAlater}

-> CSR.alias :clean=>:flush   #clean now an alias for flush

-> CSR.relabel :atmosphere, :air

-> CSR.to :air

Collection Valve::Manifold selects atmosphere

● rather than air!



 
Copyright MBARI 2022

 

15

Rotary Valves
● Each rotary valve is controlled by its Shaft position

●  Shaft is the class of all rotary valves
● Raw shaft state is an angle from 0..511

● A number of these may be defined as named positions
● Rotation direction to the new goal position

● may move over raw position 0
● may be specified

– to avoid moving over another position
● A goal position may be specified

● as a named position
● exactly between 2 named positions
● as a raw offset from one of the above



 
Copyright MBARI 2022

 

16

Shaft Configuration 
● Each 2G Dwarf may control up to 4 rotary valves numbered 0..3

-> PTV.wiring  #displays wiring information

processing[2]  #wired to 3rd channel of processing dwarf

-> PTV.legend  #displays position map

{64 => [PRV, 1, #positon labeled PRV [with alias 1] is raw angle 64

 192 => [:PRVmixing, 2],

 320 => [:mixing, 3],

 448 => [:puck, 4]}



 
Copyright MBARI 2022

 

17

Rotating Shafts 
-> PTV.to :mixing  #rotates to mixing position fastest way ‘round

-> PTV.select :mixing, avoiding: PRV

– #rotates to mixing position
– in a direction that avoids rotating by the PRV position

-> PTV.select :mixing, via: PRV #rotates opposite way!

– #rotates to mixing position via the PRV position

-> PTV.dialBetween :mixing, :puck

– #rotates to between mixing & puck position fastest way ‘round

-> PTV.dialBetween :mixing, :puck, avoiding: PRV

– #rotates to between mixing & puck position, avoiding PRV

-> PTV.rawAngle  #return the raw angular position of the shaft

320

-> PTV.at? :mixing #true if PTV is at, or very near, mixing

true



 
Copyright MBARI 2022

 

18

● Two position actuator with minimal position feedback
● In one of two states

● or transitioning between those states
● The two states are named when configured

● they may not have aliases or labels
● Examples are:

● The ESP 2G Hand was original Gripper actuator
● Some ESP 2G external Sample valves are 

controlled as Grippers
● 3G External rotary valves are all Grippers

Gripper Characteristics



 
Copyright MBARI 2022

 

19

-> Hand.close  #closes the Hand Gripper

-> Hand.open  #opens it

-> Hand.state  #:open, :closed, or :unknown

-> Hand.open?  #true if Hand is open

true

● Only on NOAA GLERL 2G ESPs...

-> Sample.deep     #moves Sample valve to its :deep position

-> Sample.shallow  #moves Sample valve to its :shallow position

● -> Sample.state  #:shallow, :deep, or :unknown

● -> Sample.deep?  #true if Sample valve is in its :deep state

false

Gripper Use



 
Copyright MBARI 2022

 

20

● Linear Actuator having precise position feedback
● Raw positions are in hardware counts

● Each Slide’s count units may be different
● Most Slides require physical ‘homing’

– to calibrate their counts position sensor
– A Slide that is not yet homed is ‘lost’

● are mapped to names with associated AxisMap
● Each Slide includes a set of named configurations

● that set motor limits and velocity profile
● only one such configuration is active at a time

Slide Characteristics



 
Copyright MBARI 2022

 

21

Basic Slide Operations
• The Slide is the “base class” for linear actuator axes
• slide.configure cfg => forces configuration object cfg to dwarf
• slide.reconfigure cfg => sends cfg only if changed from last
• slide.in(cfg)  {block} => execute block in configuration cfg
• slide.position => return the slide's current position
• slide.goal =>  return the slide's current goal position
• slide.jog counts =>  move specified # of raw encoder counts
• slide.seek  goal  => move to specified goal position

• Without updating servo's configuration
• slide.to goal, config =>  move to specified goal position

• Updating servo's configuration if appropriate
• slide.hold  => hold the current position
• slide.coast =>  turn off the servo
• slide.force =>  apply constant “force”  (slide.force 0 = slide .coast)
• slide.stop  =>  brake to a stop as fast as possible
• slide.log(decimator) {block}  => log slide status while doing block
• slide.status  => return current slide servo status object



 
Copyright MBARI 2022

 

22

How Scales Differ from Slides
• Scales inherit all the operations of Slide, adding:

• Linear mapping of logical “amounts” or “units” to raw counts
• rawCount = scale.countsPerUnit * amount + zero

• zero is simply the rawCount value at 0 amount
• scale.zero => -12580  #example case
• scale.gain => scale.countsPerUnit => 32498.0

• AxisMap associated with a Scale:
• Must contain at least two positions whose labels are numeric

• [there should be only two numerically labeled positions]
• These positions project the scale's linear mapping onto counts



 
Copyright MBARI 2022

 

23

Scale::Skew objects

• A Scale::Skew is a generic, linear mapping object
• represents

y=mx * b

• scale.skew => -12580.000+32498*counts
• scale.skew.gain => 32498.0, scale.skew.bias => -12580

• scale.skew.apply(2) => 52416.0  # == 2*32498 – 12580
• solves for y (engineering units) given x (counts)

• scale.skew.reverse(scale.skew.apply(x)) => x
• solves for x (counts) given y (engineering units)

• Skew.bestFit(counts, units) => skew that best fits data
• Skew.interpolate() => interpolates among array of skews

• Scale::Skews are also used to calibrate Thermal pads!



 
Copyright MBARI 2022

 

24

How Syringes differ from Scales

• A syringe is merely a scale with volumetric units
• volume is defined as an alias for amount
• Similarly for maxVolume and minVolume
• fill method moves to the syringe's maxPosition
• empty method moves to the syringe's minPosition



Copyright MBARI 2022

25

2G ESP Dwarf DC Motor Servos
• Two identical servo channels

• 64hz sampling timebase (sample rate typically 32hz)

• Each Channel's Inputs:
– Quadrature incremental encoder 

• (A and B 90 degrees out of phase)
– Home flag (typically a hall effect sensor)
– Optional threshold sensor
– Forward and Reverse limit switches
– One General Purpose digital input bit (for gripper)

• Each Channel Outputs:
– PWM  -100% to 100% (15 kHz with 1% resolution)
– One General Purpose digital output bit



Copyright MBARI 2022

26

Configuration Object Details

•:samplePeriod = number of 64hz timebase tics per sample tic
– Default value = 2 (Typically 1 or 2)

•:encoder, :threshold, :home sensor power / polarity
– Default value = :off (may be :positive or :negative)

•:homeDirection = :forward or :reverse
– Default value = :reverse
– :reverse moves negative if home flag inactive

•:brake = short motor terminals on servo error (:false or :true)
– Default value = true

•:debug = output servo state at sample rate while seeking goal
– Default value = false



Copyright MBARI 2022

27

Control Gains and Factors

• PID :gain struct with members P, I, and D

– Default values for each are 0

– Servo will not operate until at least one is non-zero

– Effective value of P and D is divided by 4096

– I is effectively divided by 16384

• :friction compensation gain
– cmdVel * friction / 4096 added to PWM output

– cmdVel = Commanded velocity

• :stiction compensation factor
– If negative cmdVel, subtract stiction/2 from PWM
– If positive cmdVel, add stiction/2 to PWM



Copyright MBARI 2022

28

Trajectory Generator (1 of 2)
• :acceleration & :deceleration in counts/tic/tic

– Default values for each are 0, normally positive

– Specify negative acceleration to disable “softstart”

– Zero :deceleration implies 
deceleration=abs(acceleration)

• :maxSpeed = plateau velocity in counts/tic 

– Temporarily reduced when PWM limits reached to 
prevent trajectory errors due to low battery voltage

• :minSpeed = slowest acceptable progress rate (counts/sec) 

– Speed error if maxSpeed reduced below minSpeed

• :maxSettling = max tics to allow to servo to settle at goal
– Default 0, typically 2 – 3 seconds worth of tics
– Just ensures that position error not returned too early



Copyright MBARI 2022

29

Trajectory Generator (2 of 2)
• :stopWindow detemines how nearly goal should be reached

– Specified in encoder counts (16 bit limit max)

– Temporarily increased each time goal is passed

– Special Value false indicates no (more) reseeks allowed

– Defaults to Special Value :deceleration = deceleration rate

– Also accepts value :acceleration

•  :hunt determines whether to adjust setpoint after goal reached

– Defaults to false, set true to “fight” to hold exact position at goal

– Setpoint is never adjusted if position within stopWindow

• :thresholdOffset determines how far from threshold to stop when reached

– Defaults to 0 encoder counts

– When threshold reached before goal, goal = position + thresholdOffset

– Used to position top of puck stack with respect to ESP's top plate



Copyright MBARI 2022

30

Core Limits

• :maxPWM & :minPWM

– Max must be >= min, but each may be negative or positive

– Constrains servo output, but does not constrain “force” command

– Effective maxSpeed is reduced when servo reaches these PWM limits

•  :maxPositionErr determines absolute maximum tolerable servo error in 
different contexts:

–  SeekErr if stopWindow grows too large due to repeatedly missing 
goal

– TrajectoryErr if position becomes too far from setpoint while transiting

– PositionErr if position moves too far from goal after arrival

• :maxCurrent determines maximum allowable motor current
– In milliamps
– Should never be set > 2000mA



Copyright MBARI 2022

31

Pressure Limits

• :maxInPress, :maxOutPress, :minInPress, :minOutPress
– 0 to 4095 ADC counts 

– Maximum/Minimum tolerated Intake and Outlet pressures

– Constraint disabled if corresponding max == min

– All default to 0

• :maxDeltaPress & :minDeltaPress -- (-4095 to 4095)ADC counts 

– Maximum/Minimum tolerated pressure difference

– Constraint disabled if set to special value:  false

– All default to false  (there is no corresponding value true)

•  Generic “Pressure Error” results if any of the above are violated
– One must check status to determine the exact problem



Copyright MBARI 2022

32

Pressure Servo Configuration
• :inputDeltaPress determines if pressure delta is sensed or 

derived

– True to input the difference from ADC 7

– False to derive it as (intake – outlet) pressure

– Defaults to false

• :pressBias is subtracted from delta pressure before use

– In servo or limit check

– Defaults to 0

•  :pressGain is the proportional gain of the pressure servo

– Scaled like P and D, pressGain is *4096

–  Reduces acceleration from that normally determined by 
the trajectory generator.

– Never causes command velocity to fall below minSpeed



Copyright MBARI 2022

33

Default Processing Syringe 
I2C::Servo::Configuration 

:PS.denotes Syringe "Processing Syringe",
               :processing, 0,

  :encoder=>:negative, :home=>:negative, 
homeDirection:false,

  maxPositionErr:65, 

  gain:PIDgain(3500, 3000, 1300),

  friction:170,

  maxSpeed:100, minSpeed:30,

  acceleration:5,

  maxCurrent:120,

  maxSettling:3*32

PS.maxDuration=160 #how long can a move take?

• excerpted from shallow/preconfig.rb



Copyright MBARI 2022

34

Alternative Processing Syringe 
Servo Configurations

• Based on default configuration shown on previous slide:

PS.defCfg :fast, maxSpeed:300

PS.defCfg :slow, maxSpeed:50

PS.defCfg :slow1, maxSpeed:10, minSpeed:2, acceleration:2

• Based on :slow1 configuration (defined above):

PS.defCfg :slow2, :like=>:slow1, minSpeed:5

• excerpted from shallow/postconfig.rb



Copyright MBARI 2022

35

Switching Servo Configurations

###  The easy (and correct way) ###

PS.to  PS.maxVolume/2, :slow1  #half full (or is it empty?)

– Only changes the configuration if necessary

– Don't use .seek unless sure the config already loaded on dwarf.

###  The hard (and also correct way)  ###
PS.in :slow1 do

PS.to  PS.maxVolume/2

PS.empty   #this is still in PSslow1

end

PS.fill   #old configuration restored (likely PSconfig)

– slide.in {block} constructs may be nested arbitrarily deep



Copyright MBARI 2022

36

I2C::Servo::Status Objects

• :enabled = true if servo control is active

• :pastRLS, :pastFLS, :pastThreshold, :home
– True if corresponding switch is closed

• :position = 32-bit signed offset from home position

• :velocity = 16-bit signed in encoder counts/tics

• :current = signed milliamps
– Always agrees with sign of PWM status below

• :PWM = signed percent PWM duty cycle

• :err = 16-bit signed (setpoint – position)

• :voltage = raw motor voltage (in volts)
– This is the only floating point value



Copyright MBARI 2022

37

Servo Pressure Status

• Recall that pressure may be a proxy for any arbitrary 
volage input

• :inPress = intake pressure in raw ADC counts (0-4095)

• :outPress = outlet pressure in ADC counts

• :deltaPress = delta pressure in ADC counts
– This is always ADC channel 7
– It is not affected by the :inputDeltaPress 

configuration flag



Copyright MBARI 2022

38

Plotting Slide Servo Trajectories

• Add ssh key to workstation's authorized_keys file 
– So that the ESP host can run commands without password prompts

• Test from Linux shell prompt, on ESP host, by invoking:  

$ ssh  workstation  ls
• This is a security breach.  Remove key when done if it worries you.

• Edit remotePlot method utils/plot.rb as necessary

• To change the workstation name (and possibly the display number)

-> require 'plot'    #only once per session

• To produce each new plot window:
-> remotePlot  slide.log {blockOfCodeExercisingSlide}

• e.g. plotting default status fields of position, velocity and current:

-> plot CC.log  {CC.to :closed}

• e.g. plotting :current,:voltage, :pwm, and :err

-> plot(CC.log {CC.to :closed},  :current, :voltage, :pwm, :err) 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

