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ESP Physical State
● Canister environmental sensors
● Power Switches
● All moving actuators:

– Rotary Valves
– Solenoid Valves
– Syringes
– Clamps
– Carousel
– Elevator
– Elbow
– Gripper

● Puck Heaters
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Gateway Canister State
● Quietly logged once every

● 10min for 2G,  2min for 3G
-> Gate.queryCan   #or simply -> can

Can@22:40:11, 24.2C, 67% humidity, 14.2psia, 13.684V, 0.256A, 
187.834Ah, 3.50W

● Ah is only available with newest firmware

-> Gate.queryCan takes an immediate reading
– can is an alias for Gate.queryCan

-> Gate.can uses the most recent reading

-> Gate.canPollInterval=30.seconds

-> Gate.canPollInterval=0 #no polling
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Canister State details
-> Can.unit #all available can sensors

{avgCurrent: {format: "%.3fA avg"},

 batteryUsed: {format: "%.3fAh"},

 current: {format: "%.3fA"},

 humidity: {format: "%d%% humidity"},

 pressure: {format: "%.1fpsia"},

 temperature: {format: "%.1fC"},

 voltage: {format: "%.3fV"},

 waterAlarm: {format: "%d%% Wet!",

 threshold: 1.5}}

-> Can.missionDuration  #duration power has been on

5 weeks, 3 days, 10:19:32.40625

-> c=can; (c.voltage*c.batteryUsed).round  #~Wh used
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Gateway Power Switches
-> Power #state of all power switches

{analytic1: false,

 analytic2: false,

 analytic3: false,

 camera: false,

 core: false,

 raw: false,

 sampler: false}

-> Power.sampler :on  #turn sampler on

-> Power.on :sampler  #turn sampler on

-> Power.off :sampler, :camera  #turn off sampler and camera

-> Power.offSince[:sampler]  #when sampler was turned off or nil

-> Power.onSince[:core]    #when core was powered on or nil

-> Power.sampler  #True if sampler is on
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Linear Actuator Class Hierarchy
• Slide => Lowest level at which end-users interface with hardware

• Think of a slide trombone with named positions for arbitrary “notes”
• Forearm, Elbow, Carousel

• Clamp => inherits from Slide
• Adds closed?, open?, and closeAndVerifyPuckPresence

• Scale => inherits from Slide
• Adds a linear, numeric scale (in standard units) to Slides 
• Elevator  #unit = puck height

• Syringe => inherits from Scale
• adds pull, push, fill, empty volume methods
• Collection, Processing, Sampler, Analytical syringes

• Thermal => inherits from Scale
• replaces motor with a heater

• Errors come from microcontrollers, which are all managed by Slide class
• This is why Linear Actuators report most errors as “Slide::Error”
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Other Actuator Classes
● Shaft is a rotary actuator

● all of which just happen to spin a rotary valves
● Gripper is a two state actuator

● with binary position sensing
● May control a robotic hand or a motorized valve

● Solenoid is a two or three state solenoid actuator
● without position feedback sensing

● Valve is a Solenoid used to control fluid flow
● Valve::Manifold is an array of Valve

● sharing a common fluid path
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Using AxisMaps
• An AxisMap maps all raw counts to corresponding position names
• They are typically accessed via their associated Axis or Positions:

• axis.legend => the AxisMap as a Hash
• axis.list => list of all names without raw positions
• axis.labels => list of only the position labels – omitting aliases
• axis.maxPosition => position mapped to greatest raw counts
• axis.minPosition => position mapped to least raw counts
• axis.advance => move to position with next higher raw counts
• axis.retard => move to position with next lower raw counts
• axis.at?(position) => true if axis is at (or near) specified position
• axis.near?(position) => true if axis is at or near position
• axis.between?(pos1,pos2) => true if axis is (nearly) between
• axis.rawId(rawCount) => position nearest rawCount (reverse map)
• position.advance(detents) => position with next higher raw counts
• position.retard(detents) => position with next lower raw counts
• position.near?(position) => true if positions very near each other
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● Hardware counts <==> names and aliases
-> Forearm.legend

{-12793 => 3, -12782 => 5, -12726 => 7,-12711 => 4,

 -12706 => 2, -12699 => 1, -12678 => 6,

 -12501 => [CC, :collection, Collection],

 -12418 => [PC, :processing, Processing],

 -12342 => [:garage, FlushPuck, FlushPuck::Garage],

 0 => :home,

 2800 => ["retracted", :retract, :clear]}

● Defined in configure.rb as:

Forearm.detents 0=>:home, 2800=>"retracted",

    -12501=>CC, -12418=>PC, -12342=>:garage,

    -12699=>1, -12706=>2, -12793=>3, -12711=>4, -12782=>5,

    -12678=>6, -12726=>7

Axis Map Example
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Solenoid Valves
● Solenoid valve state is either open, closed, or unknown
● Intake and Exhaust external solenoid valves

● Unipoler, normally closed
● Draw a lot of power while opened

● Solenoid valves in Manifolds
● Bipoler, latching
● Latching Valve state is initially unknown
● Draw power in short pulses when changing state

-> Intake.to :open #holds Intake open

-> Intake.open #ditto

-> Solenoid #shows Intake and Exhaust state
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Solenoid Valves Plumbing
● Each ESP 2G Dwarf microcontroller

● drives 8 solenoids numbered 0..7
● To show how a solenoid is connected:

-> Intake.wiring  #how is Intake wired?

sampler[6] #it’s 2nd to last on sampler dwarf
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Valve::Manifold
● Each composed of a series of Solenoid::Valve plus an endName

● Valve::Manifold state = either the name
– of its first opened Solenoid::Valve
– or its endName, if no Solenoid::Valve is open

● Individual valves in the manifold can be accessed

-> CSR.series[0].open  #open 1st CSR valve

-> CSR.wiring  #shows wiring connections

[:lysis <=> collection[0],   #these need not be in order

 :diluent <=> collection[1],

 :RNAlater <=> collection[2],

 :mfbkill <=> collection[3],

 :kill <=> collection[4],

 :flush <=> collection[5]]
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Valve::Manifold Configuration
● Collection Series configuration is often machine specific

● Example for ESPwaldo, defined in its configure.rb file:

:CSR.denotes Valve::Manifold :Collection, [

   Valve.reagent(:lysis, CollectionValves,0),

   Valve.reagent(:diluent, CollectionValves,1),

   Valve.reagent([:RNAlater, :rnal], CollectionValves,2),

   Valve.reagent(:mfbkill, CollectionValves,3),

   Valve.reagent(:kill, CollectionValves,4),

   Valve.reagent(:flush, CollectionValves,5)  ], :air

● :air is the manifold’s “endName” representing

● its state when all its series valves are closed
● :rnal is an alias for :RNAlater
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aliases and labels
● Each named position has exactly one label

● in addition, it may have any number of aliases
● A position is output by its label

● but may be input by its label or any corresponding alias
-> CSR.aliases

{rnal: :RNAlater}

-> CSR.alias :clean=>:flush   #clean now an alias for flush

-> CSR.relabel :atmosphere, :air

-> CSR.to :air

Collection Valve::Manifold selects atmosphere

● rather than air!



 
Copyright MBARI 2022

 

15

Rotary Valves
● Each rotary valve is controlled by its Shaft position

●  Shaft is the class of all rotary valves
● Raw shaft state is an angle from 0..511

● A number of these may be defined as named positions
● Rotation direction to the new goal position

● may move over raw position 0
● may be specified

– to avoid moving over another position
● A goal position may be specified

● as a named position
● exactly between 2 named positions
● as a raw offset from one of the above
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Shaft Configuration 
● Each 2G Dwarf may control up to 4 rotary valves numbered 0..3

-> PTV.wiring  #displays wiring information

processing[2]  #wired to 3rd channel of processing dwarf

-> PTV.legend  #displays position map

{64 => [PRV, 1, #positon labeled PRV [with alias 1] is raw angle 64

 192 => [:PRVmixing, 2],

 320 => [:mixing, 3],

 448 => [:puck, 4]}
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Rotating Shafts 
-> PTV.to :mixing  #rotates to mixing position fastest way ‘round

-> PTV.select :mixing, avoiding: PRV

– #rotates to mixing position
– in a direction that avoids rotating by the PRV position

-> PTV.select :mixing, via: PRV #rotates opposite way!

– #rotates to mixing position via the PRV position

-> PTV.dialBetween :mixing, :puck

– #rotates to between mixing & puck position fastest way ‘round

-> PTV.dialBetween :mixing, :puck, avoiding: PRV

– #rotates to between mixing & puck position, avoiding PRV

-> PTV.rawAngle  #return the raw angular position of the shaft

320

-> PTV.at? :mixing #true if PTV is at, or very near, mixing

true
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● Two position actuator with minimal position feedback
● In one of two states

● or transitioning between those states
● The two states are named when configured

● they may not have aliases or labels
● Examples are:

● The ESP 2G Hand was original Gripper actuator
● Some ESP 2G external Sample valves are 

controlled as Grippers
● 3G External rotary valves are all Grippers

Gripper Characteristics
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-> Hand.close  #closes the Hand Gripper

-> Hand.open  #opens it

-> Hand.state  #:open, :closed, or :unknown

-> Hand.open?  #true if Hand is open

true

● Only on NOAA GLERL 2G ESPs...

-> Sample.deep     #moves Sample valve to its :deep position

-> Sample.shallow  #moves Sample valve to its :shallow position

● -> Sample.state  #:shallow, :deep, or :unknown

● -> Sample.deep?  #true if Sample valve is in its :deep state

false

Gripper Use
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● Linear Actuator having precise position feedback
● Raw positions are in hardware counts

● Each Slide’s count units may be different
● Most Slides require physical ‘homing’

– to calibrate their counts position sensor
– A Slide that is not yet homed is ‘lost’

● are mapped to names with associated AxisMap
● Each Slide includes a set of named configurations

● that set motor limits and velocity profile
● only one such configuration is active at a time

Slide Characteristics
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Basic Slide Operations
• The Slide is the “base class” for linear actuator axes
• slide.configure cfg => forces configuration object cfg to dwarf
• slide.reconfigure cfg => sends cfg only if changed from last
• slide.in(cfg)  {block} => execute block in configuration cfg
• slide.position => return the slide's current position
• slide.goal =>  return the slide's current goal position
• slide.jog counts =>  move specified # of raw encoder counts
• slide.seek  goal  => move to specified goal position

• Without updating servo's configuration
• slide.to goal, config =>  move to specified goal position

• Updating servo's configuration if appropriate
• slide.hold  => hold the current position
• slide.coast =>  turn off the servo
• slide.force =>  apply constant “force”  (slide.force 0 = slide .coast)
• slide.stop  =>  brake to a stop as fast as possible
• slide.log(decimator) {block}  => log slide status while doing block
• slide.status  => return current slide servo status object
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How Scales Differ from Slides
• Scales inherit all the operations of Slide, adding:

• Linear mapping of logical “amounts” or “units” to raw counts
• rawCount = scale.countsPerUnit * amount + zero

• zero is simply the rawCount value at 0 amount
• scale.zero => -12580  #example case
• scale.gain => scale.countsPerUnit => 32498.0

• AxisMap associated with a Scale:
• Must contain at least two positions whose labels are numeric

• [there should be only two numerically labeled positions]
• These positions project the scale's linear mapping onto counts
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Scale::Skew objects

• A Scale::Skew is a generic, linear mapping object
• represents

y=mx * b

• scale.skew => -12580.000+32498*counts
• scale.skew.gain => 32498.0, scale.skew.bias => -12580

• scale.skew.apply(2) => 52416.0  # == 2*32498 – 12580
• solves for y (engineering units) given x (counts)

• scale.skew.reverse(scale.skew.apply(x)) => x
• solves for x (counts) given y (engineering units)

• Skew.bestFit(counts, units) => skew that best fits data
• Skew.interpolate() => interpolates among array of skews

• Scale::Skews are also used to calibrate Thermal pads!
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How Syringes differ from Scales

• A syringe is merely a scale with volumetric units
• volume is defined as an alias for amount
• Similarly for maxVolume and minVolume
• fill method moves to the syringe's maxPosition
• empty method moves to the syringe's minPosition
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2G ESP Dwarf DC Motor Servos
• Two identical servo channels

• 64hz sampling timebase (sample rate typically 32hz)

• Each Channel's Inputs:
– Quadrature incremental encoder 

• (A and B 90 degrees out of phase)
– Home flag (typically a hall effect sensor)
– Optional threshold sensor
– Forward and Reverse limit switches
– One General Purpose digital input bit (for gripper)

• Each Channel Outputs:
– PWM  -100% to 100% (15 kHz with 1% resolution)
– One General Purpose digital output bit
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Configuration Object Details

•:samplePeriod = number of 64hz timebase tics per sample tic
– Default value = 2 (Typically 1 or 2)

•:encoder, :threshold, :home sensor power / polarity
– Default value = :off (may be :positive or :negative)

•:homeDirection = :forward or :reverse
– Default value = :reverse
– :reverse moves negative if home flag inactive

•:brake = short motor terminals on servo error (:false or :true)
– Default value = true

•:debug = output servo state at sample rate while seeking goal
– Default value = false
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Control Gains and Factors

• PID :gain struct with members P, I, and D

– Default values for each are 0

– Servo will not operate until at least one is non-zero

– Effective value of P and D is divided by 4096

– I is effectively divided by 16384

• :friction compensation gain
– cmdVel * friction / 4096 added to PWM output

– cmdVel = Commanded velocity

• :stiction compensation factor
– If negative cmdVel, subtract stiction/2 from PWM
– If positive cmdVel, add stiction/2 to PWM
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Trajectory Generator (1 of 2)
• :acceleration & :deceleration in counts/tic/tic

– Default values for each are 0, normally positive

– Specify negative acceleration to disable “softstart”

– Zero :deceleration implies 
deceleration=abs(acceleration)

• :maxSpeed = plateau velocity in counts/tic 

– Temporarily reduced when PWM limits reached to 
prevent trajectory errors due to low battery voltage

• :minSpeed = slowest acceptable progress rate (counts/sec) 

– Speed error if maxSpeed reduced below minSpeed

• :maxSettling = max tics to allow to servo to settle at goal
– Default 0, typically 2 – 3 seconds worth of tics
– Just ensures that position error not returned too early
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Trajectory Generator (2 of 2)
• :stopWindow detemines how nearly goal should be reached

– Specified in encoder counts (16 bit limit max)

– Temporarily increased each time goal is passed

– Special Value false indicates no (more) reseeks allowed

– Defaults to Special Value :deceleration = deceleration rate

– Also accepts value :acceleration

•  :hunt determines whether to adjust setpoint after goal reached

– Defaults to false, set true to “fight” to hold exact position at goal

– Setpoint is never adjusted if position within stopWindow

• :thresholdOffset determines how far from threshold to stop when reached

– Defaults to 0 encoder counts

– When threshold reached before goal, goal = position + thresholdOffset

– Used to position top of puck stack with respect to ESP's top plate
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Core Limits

• :maxPWM & :minPWM

– Max must be >= min, but each may be negative or positive

– Constrains servo output, but does not constrain “force” command

– Effective maxSpeed is reduced when servo reaches these PWM limits

•  :maxPositionErr determines absolute maximum tolerable servo error in 
different contexts:

–  SeekErr if stopWindow grows too large due to repeatedly missing 
goal

– TrajectoryErr if position becomes too far from setpoint while transiting

– PositionErr if position moves too far from goal after arrival

• :maxCurrent determines maximum allowable motor current
– In milliamps
– Should never be set > 2000mA
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Pressure Limits

• :maxInPress, :maxOutPress, :minInPress, :minOutPress
– 0 to 4095 ADC counts 

– Maximum/Minimum tolerated Intake and Outlet pressures

– Constraint disabled if corresponding max == min

– All default to 0

• :maxDeltaPress & :minDeltaPress -- (-4095 to 4095)ADC counts 

– Maximum/Minimum tolerated pressure difference

– Constraint disabled if set to special value:  false

– All default to false  (there is no corresponding value true)

•  Generic “Pressure Error” results if any of the above are violated
– One must check status to determine the exact problem
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Pressure Servo Configuration
• :inputDeltaPress determines if pressure delta is sensed or 

derived

– True to input the difference from ADC 7

– False to derive it as (intake – outlet) pressure

– Defaults to false

• :pressBias is subtracted from delta pressure before use

– In servo or limit check

– Defaults to 0

•  :pressGain is the proportional gain of the pressure servo

– Scaled like P and D, pressGain is *4096

–  Reduces acceleration from that normally determined by 
the trajectory generator.

– Never causes command velocity to fall below minSpeed
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Default Processing Syringe 
I2C::Servo::Configuration 

:PS.denotes Syringe "Processing Syringe",
               :processing, 0,

  :encoder=>:negative, :home=>:negative, 
homeDirection:false,

  maxPositionErr:65, 

  gain:PIDgain(3500, 3000, 1300),

  friction:170,

  maxSpeed:100, minSpeed:30,

  acceleration:5,

  maxCurrent:120,

  maxSettling:3*32

PS.maxDuration=160 #how long can a move take?

• excerpted from shallow/preconfig.rb
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Alternative Processing Syringe 
Servo Configurations

• Based on default configuration shown on previous slide:

PS.defCfg :fast, maxSpeed:300

PS.defCfg :slow, maxSpeed:50

PS.defCfg :slow1, maxSpeed:10, minSpeed:2, acceleration:2

• Based on :slow1 configuration (defined above):

PS.defCfg :slow2, :like=>:slow1, minSpeed:5

• excerpted from shallow/postconfig.rb
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Switching Servo Configurations

###  The easy (and correct way) ###

PS.to  PS.maxVolume/2, :slow1  #half full (or is it empty?)

– Only changes the configuration if necessary

– Don't use .seek unless sure the config already loaded on dwarf.

###  The hard (and also correct way)  ###
PS.in :slow1 do

PS.to  PS.maxVolume/2

PS.empty   #this is still in PSslow1

end

PS.fill   #old configuration restored (likely PSconfig)

– slide.in {block} constructs may be nested arbitrarily deep
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I2C::Servo::Status Objects

• :enabled = true if servo control is active

• :pastRLS, :pastFLS, :pastThreshold, :home
– True if corresponding switch is closed

• :position = 32-bit signed offset from home position

• :velocity = 16-bit signed in encoder counts/tics

• :current = signed milliamps
– Always agrees with sign of PWM status below

• :PWM = signed percent PWM duty cycle

• :err = 16-bit signed (setpoint – position)

• :voltage = raw motor voltage (in volts)
– This is the only floating point value
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Servo Pressure Status

• Recall that pressure may be a proxy for any arbitrary 
volage input

• :inPress = intake pressure in raw ADC counts (0-4095)

• :outPress = outlet pressure in ADC counts

• :deltaPress = delta pressure in ADC counts
– This is always ADC channel 7
– It is not affected by the :inputDeltaPress 

configuration flag
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Plotting Slide Servo Trajectories

• Add ssh key to workstation's authorized_keys file 
– So that the ESP host can run commands without password prompts

• Test from Linux shell prompt, on ESP host, by invoking:  

$ ssh  workstation  ls
• This is a security breach.  Remove key when done if it worries you.

• Edit remotePlot method utils/plot.rb as necessary

• To change the workstation name (and possibly the display number)

-> require 'plot'    #only once per session

• To produce each new plot window:
-> remotePlot  slide.log {blockOfCodeExercisingSlide}

• e.g. plotting default status fields of position, velocity and current:

-> plot CC.log  {CC.to :closed}

• e.g. plotting :current,:voltage, :pwm, and :err

-> plot(CC.log {CC.to :closed},  :current, :voltage, :pwm, :err) 
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