

Copyright MBARI 2022

1

Overview of
Environmental Sample Processor

(ESP)
Support Software

5/7/22 Brent Roman brent@mbari.org

Copyright MBARI 2022

2

Major ESP Software Components
● U-Boot Open Source system boot loader

● Starts GNU/Linux from power up or hardware reset
● GNU/Linux Operating System

● Open source operating system
● Includes complete suite of UNIX text processing utilities

● The Unix Shell and its Scripting Language
● Starts/Stops and manages processes
● Central to almost all Linux (and Unix) computers

● Ruby Scripting Language
● Object oriented, general purpose programming
● Slow, but safe and very flexible

Copyright MBARI 2022

3

Das U-Boot Universal boot loader
● Usually runs for only the first few seconds

● to load and start the Linux Kernel
● May load Linux from various storage media

● for redundancy in case some media fails
● to allow different kernel versions to be started

● Maintains an “environment” of startup options
● Environment is a set of key=value pairs
● Stored in non-volatile memory on the ESP CPU board

● Includes a very basic scripting language
● Only accessible from the ESP’s console serial port

Copyright MBARI 2022

4

Linux Kernel

● Controls access to all hardware
● Implements file storage and networking protocols
● Somewhat extensible via Device Driver modules

● Driver modules are valid only for one particular kernel version
● Updating the core kernel is difficult

– may be necessary to support new types of networking or hardware

● End users should not interact directly with the kernel
● Boot loader determines kernel parameters at startup
● Outputs a log that can be useful for debugging

Copyright MBARI 2022

5

GNU/Linux Operating System

● Linux is everywhere
● All Android Phones [Linux kernel only]
● >95% all internet servers

● GNU/Linux is derived from Unix
● Utilities and languages are (nearly) identical {Despite GNU acronym}
● Every Apple Computer runs Unix

– The entire ESP software suite runs on Apple Computers

● Windows is not derived from Unix
● However, recent Windows versions include a

– Windows Subsystem for Linux
– Should be easy to port ESP suite to this, someday

Copyright MBARI 2022

6

GNU/Unix commands
● Evolved over the past 50 years

● Some commands’ names are obvious
– head, tail, find, kill, ping, echo, sort, history, shutdown, alias,

unalias, touch
● But, common ones are obtuse and needlessly terse

– wc, mkdir, rm, rmdir, man, ls, grep, gzip, gunzip
● Google ‘Linux commands’

– If you want detailed info on specific command
● try googling: man command
● or type: $ command --help

Copyright MBARI 2022

7

Common Unix command syntax
● Almost all Unix commands parse like this:

● command {--option{=optArg}? }* {-o {optArg}? }* {argument }*

● Each command runs in a ‘process’
● Examples:

● ls #list all the files in the current directory
● ls -l #list files in long format
● ls --color=never -l #in long format without colors
● ls -l /var/log #files in the /var/log directory, long form
● tail /var/log/messages #output last lines of system log
● tail -n30 /var/log/messages #last 30 lines of system log

Copyright MBARI 2022

8

Unix Environment Variables
● The “environment” is a list of key=value pairs
● Processes inherit parts of their parent’s environment

● in addition to any explicit command arguments
● Only those environment variables marked for “export”

● Shell built-in commands alter its environment
● FOO=bar #sets variable FOO to the string “bar”

– Note that there may be no whitespace!
● FOO=”Hello there!” #whitespace must be quoted
● export FOO #causes FOO to be exported into new processes
● unset FOO #deletes the variable FOO
● env #displays all exported environment variables
● echo $FOO #displays Hello there!

● No process may alter the environment of another!

Copyright MBARI 2022

9

Some Environment Variables
typically set by Unix shell

● SHELL=/bin/sh #the path to the SHELL binary
● USER=esp #user account name
● PWD=/home/esp #current directory
● HOME=/home/esp #user’s home directory
● TZ=US/Pacific #override default time zone
● TERM=xterm #terminal type
● PATH=/bin:/usr/bin #binary search path

● Path above causes shell to search first in
/bin, failing that, it tries /usr/bin

Copyright MBARI 2022

10

ESP Environment Variables
● ESPmode=real #operating mode
● ESPhome=/home/esp/esp2 #top dir of ESP app
● ESPpath=/home/esp/esp2/mission:.

#where to search for ESP mission scripts

● ESPconfigPath= #path to config files
● ESPlog=/var/log/esp #where to write files
● ESPname=bruce #name of ESP machine
● RUBYLIB=/home/esp/esp2/lib:/home/esp/esp2/utils

● PATH=...:/opt/mbari/bin:$ESPhome/bin

Copyright MBARI 2022

11

Setting up ESP Environment
● ESPenv script initializes ESP environment

● Must be run in the current shell to have any effect!

$. ESPenv shallow eddie #for ESPeddie

– 1st argument is the ESP type (for 2G, usually “shallow”)
– 2nd argument is the machine name

● if omitted, the ESPname is derived from machine’s hostname
– additional arguments documented in script

Copyright MBARI 2022

12

Environment Variables (cont’d)
Viewing:

● $ export #shows all variables
● $ env #shows all exported variables
● $ env | grep ESP #shows only ESP variables
● $ echo $ESPname #shows the ESP’s name

Changing env var for only one command:
● $ ESPmode=real showlog

● ESPmode reverts to its original value after above
showlog command completes

● showlog could be replaced with any cmd

Copyright MBARI 2022

13

The Unix Shell
● Starts and stops commands
● May run multiple commands in parallel
● May pipe a command’s output into the input of another:

● cat /etc/passwd | sort | head #output first few sorted accounts
● Is a complete scripting language in itself

● Many ESP utilities are implemented in Unix shell script
– showlog is this script:

#!/bin/sh
tail a log -- the user's ESP log if no file name specified
defaults to -f if no tail options given
: ${logDir:=${ESPlog-`echo ~ftp`/$USER}}
unset opts
mode=$ESPmode
for arg do
 case $arg in
 -*) opts="$opts $arg"
 ;;
 *) mode=$arg
 ;;
 esac
done
eval exec tail ${opts--f} "$logDir/$mode.out"

Copyright MBARI 2022

14

Unix Shell Interactive Scripting
● showlog --help
● showlog -3
● while sleep 2; do date; done
● export ESPmode=time
● while sleep 2; do date; done >>$ESPlog/$ESPmode.out

● showlog -10 -v
● while sleep 2; do date; done >>$ESPlog/$ESPmode.out &

● jobs
– [1] + Running while sleep 2; do date; done

● showlog #clock now running in the background
● kill -STOP %1 #pause running job 1
● kill -CONT %1 #resume job 1
● kill %1 #terminate running job 1

Copyright MBARI 2022

15

Starting a Detached Process
● Try:

● create a new bin/countTime command

#!/bin/sh

while sleep 2; do date;done
● $ chmod +x bin/countTime

● export ESPmode=time
● countTime
● start countTime

● jobs #not known to this shell
● showlog #clock now running detached from shell
● kill %1 #does not work – what does?

Copyright MBARI 2022

16

Stopping a Detached Process
● After having run: start countTime

– from previous slide
● $ pstree -Gp $USER

countTime(6353)───sleep(6502)

sh(5458)

sh(5514)───pstree(6503)
● The numbers above are PIDs or “process identifiers”
● kill 6353 #or killall countTime
● wait 3 seconds
● kill 6353 #or killall countTime
● If 2nd kill attempt does not complain that process does not exist,

– $ kill -KILL 6353 #or killall -KILL countTime
● -KILL is a last resort

– as the process gets no opportunity to clean up after itself

Copyright MBARI 2022

17

Carefully Altering Text Files
● Save the original version before making changes

● cd to directory containing file cfg to be changed
● mkdir original

● ls original #verify that original/cfg does already exist

● cp cfg original #only if original/cfg does not exist yet

● chmod +w cfg #make cfg file writable if not already so

● files under esp2 subdirs are read-only

– to avoid accidental modification
● Later, you can refer to original/cfg

● or move it back over cfg to revert all changes
– mv original/cfg .

● Provides you a record of all the files you changed

Copyright MBARI 2022

18

Comparing Files
● Unix standard ‘diff’ utility will compare to text files

● or whole directories (if you read this man page)

https://linux.die.net/man/1/diff
● If you saved the original,

● to compare cfg with it:

$ diff original/cfg .
● {see ‘Carefully Altering Text Files’ slide}

https://linux.die.net/man/1/diff

Copyright MBARI 2022

19

Editing Files on the ESP
● Only text editor available is ‘vi’

● just google “vi cheat sheet”
● Save an unmodified version of before you first edit file

● Do not edit Ruby files (under esp2 directory) as root user

● Modifying system configuration files...

● may make the system unbootable
● may take down networking

● If system will not start:

● you may be able to recover by booting

– from copy of the OS provided on your SDcard
– issuing commands from the ESP’s serial console port

Copyright MBARI 2022

20

Getting to the Bootloader Prompt
● Connect to ESP serial console from another computer

● via a USB<->serial adapter cable
● 115200 baud, 8 data bits, 1 stop bit, no parity

picocom -b115200 /dev/ttyUSB0 #may be USB1
● Cycle power to the ESP

● or press the tiny reset button on the side of the
processor board near its console serial connector

● Press <Control-C> in the terminal emulator window

● the instant console output appears
● press Control-C once every 500ms until you see:

EA3141-MBARI:

– The ESP U-Boot bootloader prompt

Copyright MBARI 2022

21

Booting from the SDcard
● SDcards installed in MBARI ESPs normally

● have Gigabytes of unused data storage space
● include a complete copy of the ESP’s Linux OS

● To boot from the SDcard

● at the ESP bootloader prompt, type:

EA3141-MBARI: run sdBoot
● Beware that the system will likely be missing many or all

● of the changes you made to it
● may revert to its original networking configuration

● Avoid making unneeded changes to this backup OS

– There is no 3rd copy of the Operating System!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

