

2G ESP Water Sampling

5/25/22 Brent Roman brent@mbari.org

Syringe Pump Driven Sampling

- The 2G ESP uses its 25ml Sampling Syringe
 - to pull water through filter in Collection stage
 - while monitoring syringe pressure
- Syringe stops when pressure in it falls too low
 - until pressure equalizes
 - resumes at 90% of the previous pumping rate
- Different Samplers optimized for each filter type
 - BACsampler, HABsampler, DAsampler, etc.
 - see utils/sampler.rb, utils/gensampler.rb,
 - and protocol/2G/[BAC,HAB,DA].rb

2G Sampler Parameters (1 of 5)

- vacuum defaults to 10..13 [PSI]
 - target vacuum range while pulling through filter
- minRate defaults to 0.2 [ml/second]
 - Filter is clogged when filtering at minRate
 - generates vacuum > vacuum.max
- avgRate defaults to 0.2 [ml/second]
 - Constant filtering rate (used only during simulation)

2G Sampler Parameters (2 of 5)

- **bubblePt** defaults to nil [PSI]
 - Filter's characteristic bubble point (must be spec'd)
- evacVolume defaults to 10 [ml]
 - How far to pull back SS to evacuate puck
- endVacuum defaults to 3 [PSI]
 - Vacuum must fall below this before starting next stroke
- maxDelay defaults to 40.seconds [seconds]
 - How long to wait for endVacuum to be reached
 - Filter Clogged if vacuum still > endVacuum after maxDelay

2G Sampler Parameters (3 of 5)

- **backoff** defaults to 0.9 [seconds/seconds]
 - new filtering rate after restarted due to high vacuum
- evacDelay defaults to 40.seconds [seconds]
 - how long maintain high vacuum during puck evac
- numberOfEvacs defaults to 1
 - number of times to repeat puck evacuation
- maxPumpVolume defaults to 40 [ml]
 - max vol of air pumped to reach bubblePt during evac

2G Sampler Parameters (4 of 5)

- equalized defaults to 1.0 [PSI]
 - Intake blocked if pressure will not equalize to within this psi
- minPSI defaults to 2.5 [PSIa]
 - Minimum sampling pressure (to avoid boiling sample)
- maxResidue defaults to 0.1 [ml]
 - don't take another stroke if remaining vol < maxResidue
- primeVolume defaults to 7 [ml]
 - volume of initial prime stroke
- maxPumpVolume defaults to 40 [ml]
 - max vol of air pumped to reach bubblePt during evac

2G Sampler Parameters (5 of 5)

- meterInterval defaults to 30.seconds [seconds]
 - Flow meter reporting interval
- meterDelta defaults to .1 [Liter/min]
 - report flow changes only if > meterDelta
- exhaleConfig defaults to nil [I2C::Servo::Configuration]
 - SS configuration for exhalation

Sampling in the Lab

- -> mySampler = Sampler.new bubblePt:26
- ... verify parameters are to your liking ...
- -> mySampler.maxDelay=60.seconds #increase maxDelay
- -> CC.loadPuck :sh1 #load puck from startTube
- -> mySampler.prime
- -> mySampler.sample 55
- -> mySampler.avgRate=2
- -> mySampler.sample 125
- -> mySampler.puckEvac
- -> CC.unloadPuck

- #take the optional prime stroke
 - #sample up to 55ml more
 - #simulate faster!
 - #sample up to 125ml more
 - #dry the puck
- #put spent puck into discard tube

collectSample

-> CC.loadPuck(:sh1) {collectSample(mySampler).puckEvac}

- Loads sh1 puck from startTube
- primes and samples default goal volume with mySampler
- dries the puck
- discards it into startTube-1
- replace mySampler with any of the predefined samplers
 - BACsampler, HABsampler, DAsampler, etc.

Sampler Pressure Sensing

- -> Sampler.intakePSI #abs pressure above the filter
- -> Sampler.outletPSI #abs pressure below the filter
- -> Sampler.PSI #[abs pressure above, abs pressure below]
- -> Sampler.calibrate #tare pressure sensors
- A dry puck must be clamped in the collection stage
- Must tare after a new puck is clamped
- For hardware debugging and initial calibration:
- -> CS.status.outPress #intake pressure in raw ADC counts
- -> SS.status.outPress #outlet pressure in raw ADC counts
- Raw pressure ADC counts range 0..4095

External Sampling Aids

- External (Dumb) Pumps
 - Switched Lift Pumps
- Intake selector valves
 - Choose between shallow and deep sample intakes
- Passive Flow Meters
 - Verify water flowing through sample intake loop
- Active Flow Controllers
 - Combine meter with pump controller to regulate flow
 - Also controls an external intake selector valve

Configuring External Pumps

- Switch via ESP's :sampler external power switch
- Sampler::PumpPrimeDelay
 - defines how long pump runs to prime external loop
 - before ESP intake opens
 - typically defined in machine's configure.rb as:

```
class Sampler
   const :PumpPrimeDelay, 3.minutes
end
```


Intake Selector Valve

- External Valve selects between deep and shallow intakes
 - Only installed on GLERL ESPs
 - Connected as a Gripper
 - to the Sampler Dwarf microcontroller
 - Example config at end of ESPnessie's configure.rb:

require 'depthsel'

:Sample.denotes DepthSelectorValve "Depth Selector Valve", :sampler, 1

Sample.maxDuration=30 #allows up to 30 seconds for valve to move

- Valve must be explicitly positioned before sampling begun
 - -> Sample.shallow #select shallow intake
 - -> Sample.deep #select deep intake

Passive Flow Meters

- Two types in use:
 - Analog input (by WHOI)
 - may function as a simple flow presence/absence switch
 - or uncalibrated % of full flow
 - in ESP's Can data
 - Serial input (by NOAA NWFSC/APL)
 - on ESP's external sampler RS-232 serial port
 - logs Liters/minute every minute
 - automatically enabled during sampling

Active Flow Controller

- Developed by APL with MBARI
 - combines digital flow meter with pump speed controller
 - ESP sets desired input loop flow rate during sampling
 - Powered by External Sampler power switch
 - Communicates on External Sampler serial port

Active Flow Controller Config

• Configuration in configure.rb:

class Sampler

const :PumpPrimeDelay, 3.minutes #prime before sampling const :PrimeFlow, 2.0..7.0 #Liters/min flow range while priming const :MaintainFlow, 1.0..3.5 #flow range while sampling end

• Configuration in corecal.rb:

Active Flow Controller Use

- See lib/gauge/uwflowcontrol.rb
 - -> Flow.start #start monitoring flow
 - -> Flow.selectIntake :shallow #select shallow intake
 - -> Flow.selectIntake :deep #select deep intake
 - -> Flow.intake #verify intake selection
 - :deep
 - -> Flow.prime #run pump at faster priming flow rate
 - -> Flow.maintain #run pump at slower sampling flow rate
 - -> Flow.rate #returns current flow rate in Liters/minute
 3.2
 - -> Flow.disablePump #stop pump

