

Copyright MBARI 2014

1

Adaptive Sampling
With Trigger Conditions

5/22/14 Brent Roman brent@mbari.org

Copyright MBARI 2014

2

Traditional ESP Missions

• A sequence of “phases”, each with a prescribed start time
– Actions predetermined by puck load

• ESP sleeps between phases. While “asleep”:

– Still monitors contextual sensors
– Still maintains radio context with shore

• All phases began at times prescribed in the mission script
– Start times specified may be absolute or relative

• Relative times specify the “sleep time” between phases

• No adaptive sampling was possible without hand coding it

Copyright MBARI 2014

3

Trigger Condition Overview

• Each start time is augmented by a list of trigger conditions
– A phase starts when any of its trigger conditions is true

– The start time can be thought of as the one required trigger condition

• It determines the latest possible starting time for the phase

• Triggers start phases before their scheduled times

– Triggers cannot delay phases beyond their “start times”
– Triggers cannot change the sequence of actions performed

» Processing sequence is determined by puck load.
• Each trigger condition is reevaluated whenever contextual sensors read

– Sensible, as trigger conditions almost always evaluate sensor data

– This is a convention
(but, not difficult to circumvent if necessary)

• Each trigger condition runs in its own Ruby thread
– Failure (e.g. exceptions raised) in any trigger will not affect the others

• You can even patch the code and restart failed trigger conditions

• Or, kill the trigger thread to ensure it does not trigger the phase

Copyright MBARI 2014

4

Basic Trigger Conditions
• Basic Trigger Conditions contain arbitrary true/false expressions

– A threshold value is associated with each

• CTD.temp < threshold

• ISUS.no3 > threshold

• CTD.depth > threshold[0] and CTD.fluor > threshold[1]

– Thresholds need not be scalar values

– Trigger expressions are reevaluated just after each time contextual
sensors are read while the mission is awaiting conditions

• May be assigned names like Cold, Hot, Fresh, Salty

• Threshold values can be modified at any time
– Via the script itself or the interactively via espclient

– All modifications to thresholds are logged

• Very flexible, but also painfully verbose for complex triggers

Copyright MBARI 2014

5

Composite Trigger Conditions

• Two types
– Trigger “all” means when all subordinate conditions are true

• Trigger all: [Cold, DCM, HighNitrate]

• Equivalent to: Cold[] and DCM[] and HighNitrate[]

• Trigger all: []

– is always true
– Trigger “any” means when any subordinate condition is true

• Trigger any: [Cold, DCM, HighNitrate]

• Equivalent to: Cold[] or DCM[] or HighNitrate[]

• Trigger any: []

– is always false
• All subordinate conditions run in the same thread as the parent

Copyright MBARI 2014

6

Trigger.now!

• Not really a trigger condition, rather an action!
– Causes the current mission phase to start immediately

– Raises an exception if mission is not waiting

• Exception is raised in caller's thread

• The mission's processing is unaffected

• There need not be any trigger conditions associated with
the waiting phase for Trigger.now! to work.

– The phase may be just awaiting its start time

Copyright MBARI 2014

7

Trigger.replace or Trigger.restart
• Replace current phase's start time and/or trigger conditions

– Affects only for the phase currently waiting to start

– Raises an exception if mission is not waiting

• All arguments are optional

• First argument is the replacement phase start time

– Specify nil to leave start time unchanged

• Other arguments are replacement trigger conditions

– Omit other args to leave existing triggers in place

• Trigger.replace “+1.5 days”, Cold, Deep

– Mission will continue waiting up to 36 more hours for the
Cold or Deep condition to be satisfied

Copyright MBARI 2014

8

Trigger Range Conditions
• True if each listed measurement is within one of the associated ranges of interest

– Represented as a Ruby hash mapping keys to values. In this case:

• Keys are measurements, like:

– CTD%:temperature
– ISUS%:no3
– Not CTD.temperature #NO!!!

because that would check temperature once, when the condition was defined.
• Values are ranges, like:

– -3.3 .. 2.1
– Trigger range:

{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity => [33..33.4, 23..28.3, 35..35.5],
 ISUS%:no3 => 32.03..12.3} #may omit [] for an array of one element

– If first > last, as in 32.03..12.3 above, range check is logically negated
Equivalent to: (no3 > 32.03 or no3 < 12.3)

Copyright MBARI 2014

9

Trigger Box Conditions

• True if each listed measurement is within the same
associated box of interest
– Represented as the same Ruby hash mapping used for

Trigger Ranges

– Trigger box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity => [33..33.4, 35..35.5]}

– Read the boxes off the columns of the resulting matrix.

– If temperature is in one column and salinity is in the
other, the trigger condition is false

• Columns geometrically define a set of boxes in the space of
sensor measurements

Copyright MBARI 2014

10

Trigger Box Corner Cases
• If measurements do not specify the same number of ranges:

– Those that are missing ranges will be ignored

Trigger box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity => [33..33.4]}

● If the temperature is between 5..7.21, the trigger condition is
true, regardless of salinity

• If a measurement specifies a single range (not an Array)

– That range will be applied to all others

– As though it had been repeated in an Array

Trigger box:
{CTD%:temperature => [-3.3..2.1, 5..7.21],
 CTD%:salinity => 33..33.4}

● The salinity must always be in 33..33.4, regardless of
temperature

Copyright MBARI 2014

11

Trigger Holdoffs

• Trigger holdoffs are a simple way to avoid false triggers
– A form of glitch filtering

– ESP logs show countdown when awaiting holdoffs

• All triggers have an associated holdoff in samples
– condition must be true for at least holdoff+1 samples

– nil is the default holdoff value

• holdoff=nil, equivalent of holdoff=0

– But holdoff nil is not displayed, whereas 0 is
– holdoff of false disables that particular trigger condition

– holdoff of true forces trigger on its next evaluation

Copyright MBARI 2014

12

Trigger Thresholds

• Each trigger optionally has an associated threshold value
– Usually used to parametrize conditional expressions

• But you may choose to compare to constants instead

– Need not be scalar, only the expression interprets it

– Not usually applicable to box or range conditions

• Such thresholds would be vectors of ranges if used

• If your conditional expressions reference a threshold:

– You must set it before the trigger is used

• Cold.threshold = 4.3 #it's that easy!

– The default threshold value is nil

• CTD.fluor > nil #will generate an exception!

Copyright MBARI 2014

13

Trigger enable and disable

● Enable trigger monitoring with:
● Trigger.enable

● Disable trigger monitoring with:
● Trigger.disable

● Trigger monitoring is initially disabled
● Use Trigger.enable as soon as contextual data starts

making sense and all relevant thresholds are defined

● Triggers may be enabled/disabled at any time
● Even while awaiting them

● Triggers are initially enabled during simulation!

Copyright MBARI 2014

14

Automatic Trigger Rearm
• Trigger monitoring may be disabled whenever a trigger condition causes

a phase to start
– If triggers remain enabled, rearm is said to be true

– If triggers disable once one has fired, rearm is said to be false

• Set the rearm flag with:

– Trigger.rearm = true

• Clear the rearm flag with:

– Trigger.rearm = false

• Real missions start with rearm=false

– You may change the Trigger.rearm flag at any time

– You may want to combine it with Trigger.enable or Trigger.disable

• Simulation missions start with Trigger.rearm=true

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

